Outcome Evaluation of the Trans-NIH Summer Research Training Institutes

Office of Behavioral and Social Sciences Research

National Institutes of Health

G. Stephane Philogene, PhD (OBSSR)
James Corrigan, PhD (NCI)
Kathryn Morris, MPH (OBSSR)
Presentation Outline

• Program Background
• Evaluation Design / Methods
• Results
• Lessons Learned / Next Steps
Program Background
By the late 1990s, NIH recognized the need to strengthen the application of behavioral and social sciences in NIH biomedical research because:

1. Behavioral and social sciences research (BSSR) grant applications were not as successful in review as was expected.

2. Addressing training deficiencies not enough—also needed to build and grow communities of research investigators.

3. By mid-2000s, new research fields and approaches emerged for which there was little or no graduate training.
Institutes Held Between 2001 & 2013

Established Research Fields
- ATI: Advanced Training Institute on Health Behavior Theory
- CAD: Applied Research on Child and Adolescent Development
- SW: Social Work Institute
- RCT: Randomized Clinical Trials

Emerging Research Fields
- ISSH: Institute on System Science and Health
- mHealth: Mobile Health Training Institute
- TIDIRH: Training Institute on Dissemination and Implementation Research in Health
The Seven Summer Research Training Institutes

<table>
<thead>
<tr>
<th>SRTI</th>
<th>Estimated Annual Cost</th>
<th>Cumulative Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Randomized Clinical Trials Involving Behavioral Interventions (RCT) (FY2000)</td>
<td>$470k</td>
<td>$5.6m</td>
</tr>
<tr>
<td>NIH Summer Institute on Social and Behavioral Intervention Research (SW) (FY2004)</td>
<td>$350k</td>
<td>$2.8m</td>
</tr>
<tr>
<td>Advanced Training Institute on Health Behavioral Theory (ATI) (FY2004)</td>
<td>$300k</td>
<td>$2.7m</td>
</tr>
<tr>
<td>Training Institute in Applied Research in Child and Adolescent Development (CAD) (FY2007)</td>
<td>$250k</td>
<td>$750k</td>
</tr>
<tr>
<td>Institute on Systems Science and Health (ISSH) (FY2009)</td>
<td>$425k</td>
<td>$1.7m</td>
</tr>
<tr>
<td>Training Institute on Dissemination and Implementation Research in Health (TIDIRH) (FY2011)</td>
<td>$350k</td>
<td>$700k</td>
</tr>
<tr>
<td>mHealth Training Institute (mHealth) (FY2011)</td>
<td>$350k</td>
<td>$700k</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>$15m</td>
</tr>
</tbody>
</table>
SRTI Goals

• Increase participant grant applications, both submitted and funded

• Give skills necessary to utilize new methodologies and to generate high-quality research

• Build capacity for qualified researchers in the field

• Fill a gap in the limited number of trans-disciplinary training

• Strengthen professional networking opportunities; and

• Cultivate interest for research at academic institutions
<table>
<thead>
<tr>
<th>Training Institute</th>
<th>Host Institutions</th>
</tr>
</thead>
</table>
| RCT | • Same location each year (Airlie Center, Warrenton, Virginia)
| | • Location is accessible for NIH program staff
| SW | • Rotates among universities each year
| | • Selection of university based on who is chairing the institute for that year
| ATI | • Same location each year since second year (Business Center, University of Wisconsin)
| | • Centrally located
| CAD | • Same location each year (Bolger Conferencing Center, Potomac, Maryland)
| ISSH | • Rotates among universities each year
| | • Intended to highlight the work the host institution is doing in a specific area of systems science
| | • Intended to reinforce institution’s commitment to continuing work in system science
| | • Institutions vie for opportunity to host the training institute—considered very prestigious
| TIDIRH | • Rotates among universities each year
| | • Host institutions are allotted a few additional slots among trainees for that year
| | • Intention to highlight host institution’s current activities and strengthen their capacity for D&I
| | • Some effort to ensure geographic variability—East one year, West one year, central one year
| | • Host institution often supplies several guest faculty
| mHealth | • Rotates among universities each year
| | • Considered good publicity for university, heightens visibility to NIH, attracts potential faculty

Aspects of the institutes are considered critical to success in addition to didactic elements

1. Mentoring
2. Networking among trainees and faculty
3. Interactive group projects
4. Residential immersive setting (5-9 day training)
Research Questions

<table>
<thead>
<tr>
<th></th>
<th>Application of Learning</th>
<th>Impact of Training Institute Initiative on the Scientific Field</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>What were the total training institute costs for the years included in this evaluation?</td>
<td>10a How has this training initiative contributed to RFAs, PAs, and/or PARs in this targeted research field?</td>
</tr>
<tr>
<td>2</td>
<td>Summer Research Training Institute</td>
<td>10b How many grant applications have been received and awards made for these funding opportunities?</td>
</tr>
<tr>
<td>2a</td>
<td>To what degree did participating trainees maintain contact with and utilize post-institute mentors? How did training institutes promote mentoring relationships?</td>
<td>10c What proportion of these applications and awards come from participating trainees?</td>
</tr>
<tr>
<td>2b</td>
<td>To what degree did participating trainees maintain contact with other trainees who completed the training institute?</td>
<td>10d Is there evidence that a research field is developing around the scientific content area addressed by the training institute?</td>
</tr>
<tr>
<td>2c</td>
<td>What role did the use of networking tools (e.g., listservs, conference calls, alumni gatherings at national meetings of professional associations, etc.) play in encouraging these ongoing linkages?</td>
<td>11 How has this training initiative contributed to science advances in the targeted research field?</td>
</tr>
<tr>
<td>3</td>
<td>End-of-Course Reaction</td>
<td>12 What has been the return on investment to NIH from the costs of sponsoring this training initiative?</td>
</tr>
<tr>
<td>3</td>
<td>To what extent did participating trainees find the Summer Research Training Institute content useful and relevant to their professional work?</td>
<td>13 Has the training institute met its program goals?</td>
</tr>
<tr>
<td>4</td>
<td>Did training institute content or process change over time in response to feedback from the training institute satisfaction measure?</td>
<td>14 Does the need for this training initiative continue to exist today? How has the need changed since the training initiative was first launched?</td>
</tr>
<tr>
<td>5</td>
<td>Workplace Characteristics</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>To what extent did home institutional characteristics (Carnegie Research Classification, availability of institutional training grants, and total number of applicants to this training institute from this institution) differ for participating trainees and unselected applicants for this training institute?</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>What institutional and professional challenges or hurdles did participating trainees experience in applying what they learned from the training institute?</td>
<td></td>
</tr>
<tr>
<td>7a</td>
<td>Did participating trainees submit and obtain more NIH grants in the targeted research field than unselected applicants? Did this represent an increase in their pre-institute grant activity?</td>
<td></td>
</tr>
<tr>
<td>7b</td>
<td>Did participating trainees pursue more additional training in the targeted research field than unselected applicants?</td>
<td></td>
</tr>
<tr>
<td>7c</td>
<td>Did participating trainees produce more publications in the targeted research field than unselected applicants? Did this represent an increase in their pre-institute publication activity?</td>
<td></td>
</tr>
<tr>
<td>7d</td>
<td>Did participating trainees enter into more collaborations with other researchers in the targeted research field than unselected applicants?</td>
<td></td>
</tr>
<tr>
<td>7e</td>
<td>Did participating trainees increase their teaching activities with students, fellows, and peers in the targeted research field than unselected applicants?</td>
<td></td>
</tr>
<tr>
<td>7f</td>
<td>Were participating trainees more likely than unselected applicants to obtain memberships in targeted research professional associations?</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Did training institutes that offered mentoring and/or supported networking among participating trainees achieve more favorable outcomes than those that did not?</td>
<td></td>
</tr>
<tr>
<td>9a</td>
<td>What career impacts did these results produce in terms of: career advancement (e.g., tenure, promotions, awards and honors)?</td>
<td></td>
</tr>
<tr>
<td>9b</td>
<td>What career impacts did these results produce in terms of participation on NIH internal review panels and NIH sponsored meetings and conferences?</td>
<td></td>
</tr>
<tr>
<td>9c</td>
<td>What career impacts did these results produce in terms of attaining enhanced stature within the research community (e.g., in professional associations, invited papers, editorial activities for journals, monographs, leading multi-institutional research teams, etc.)?</td>
<td></td>
</tr>
</tbody>
</table>
Feasibility & Outcome Evaluation Phases

NIH Summer Research Training Institutes (SRTIs) Outcome Evaluation (Phase II)

Final Report

September 2016
Evaluation Design / Methods
Expected Outcomes:
Scholarly Productivity & Effectiveness

Short-Term
- New grants submitted
- New NIH- & non-NIH-funded grant awards
- New publications
- Collaborations established with fellow trainees and/or mentors
- Teaching activities
- Membership professional associations
- Conference presentations

Long-Term
- New multidisciplinary research teams
- Stimulate and cultivate science within and across NIH
- Career advancement (tenure, promotion, awards)
- Participation on NIH Internal Review Panels
- Scientific leadership (within research professional associations, program grants, multi-institutional research teams)
- Stimulate science within own institution
- Increase in number of grant awards
Kirkpatrick Four Level Training Evaluation Model

<table>
<thead>
<tr>
<th>Level 1: REACTION</th>
<th>The degree to which participants react favorably to the learning event.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Level 2: LEARNING</td>
<td>The degree to which participants acquire the intended knowledge, skills, and attitudes based on their participation in the learning event.</td>
</tr>
<tr>
<td>Level 3: BEHAVIOR</td>
<td>The degree to which participants apply what they learned during training, when they are back on the job.</td>
</tr>
<tr>
<td>Level 4: RESULTS</td>
<td>The degree to which targeted outcomes occur, as a result of the learning event(s) and subsequent reinforcement.</td>
</tr>
</tbody>
</table>

PROGRAM & EVALUATION PLANNING

DATA COLLECTION
Theory of Change – Facilitators of Change

<table>
<thead>
<tr>
<th>Facilitator</th>
<th>Before Training</th>
<th>During Training</th>
<th>After Training</th>
</tr>
</thead>
<tbody>
<tr>
<td>Workplace/institutional support</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Participant selection criteria</td>
<td></td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Scientific knowledge gain</td>
<td></td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Role modeling</td>
<td></td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Role practice</td>
<td></td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Relationship development</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Network expansion</td>
<td></td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Collaboration</td>
<td></td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Face-to-face communications</td>
<td></td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Observing others</td>
<td></td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Real-world application with feedback</td>
<td></td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>
Change Steps

Training is perceived as relevant and useful

Trainees have learned new knowledge and skills and made contacts

Trainees return home and receive support

Trainees produce grant applications, publications and new teaching activities

New awards, publications and teaching activities lead to career advancement

Successful trainees increase the stock of NIH research portfolios

Based on conceptual model and Kirkpatrick Four Level framework for planning & evaluating training, series of change steps developed.
Design & Data Collection Methods Summary

• **Design Features**
 • Mixed methods – quantitative & qualitative
 • Comparison group – unselected applicants

• **Data Collection Methods**
 • Grant and Publication Data Abstracted from NIH Reporter and IMPAC II QVR
 • Stakeholder Interview Data
 • Participant Satisfaction Forms
 • Online Surveys of SRTI Faculty, Participants, and Unselected Applicants
Methods / Data Sources by Phase

Phase I – Feasibility Study

Literature Review

Assemble available data from SRTIs
- Applicant materials & scoring
- Participant satisfaction ratings
- Cost data

Interview Program Officers, Faculty, & other Stakeholders
- Developers, program leaders, and faculty from all SRTIs interviewed to gather background information and views on important outcomes expected

Phase II – Outcome Evaluation

Conduct Archival Data Abstraction and Bibliometric Analyses
- Applicant and Participant publications, grant submissions, etc.

Construct comparison groups
- Attempted to contact all participants and unselected applicants and survey the entire population

Survey Trainees, Unselected Applicants, Training Faculty
- Online surveys were developed to address research questions and sent to the entire population of each group
Evaluation Research Question Topic Areas & Methods / Data Sources

<table>
<thead>
<tr>
<th>Evaluation Question Topic Area</th>
<th>IMPAC II QVR / NIH RePORTER</th>
<th>Feasibility Study Interviews</th>
<th>Participant Satisfaction Forms</th>
<th>Online Surveys</th>
</tr>
</thead>
<tbody>
<tr>
<td>Training Institute Inputs</td>
<td></td>
<td>☒</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Institute Characteristics</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>End-of-Course Reaction</td>
<td></td>
<td>☒</td>
<td>☒</td>
<td>☒</td>
</tr>
<tr>
<td>Workplace Characteristics</td>
<td></td>
<td>☒</td>
<td></td>
<td>☒</td>
</tr>
<tr>
<td>Application of Learning</td>
<td></td>
<td>☒</td>
<td></td>
<td>☒</td>
</tr>
<tr>
<td>Impact of Learning on Trainees</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Impact of Institute on Field</td>
<td></td>
<td>☒</td>
<td>☒</td>
<td>☒</td>
</tr>
<tr>
<td>Return on Investment to NIH</td>
<td></td>
<td>☒</td>
<td>☒</td>
<td>☒</td>
</tr>
</tbody>
</table>
Survey Response Rates

<table>
<thead>
<tr>
<th>Total Population</th>
<th>Surveys that Reached Potential Respondents</th>
<th>Completed</th>
<th>Response Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trainees</td>
<td>856</td>
<td>767</td>
<td>313</td>
</tr>
<tr>
<td>Unselected Applicants</td>
<td>1,788</td>
<td>1,536</td>
<td>317</td>
</tr>
<tr>
<td>Faculty</td>
<td>358</td>
<td>282</td>
<td>102</td>
</tr>
</tbody>
</table>
Results
Results

• Examples of results are presented by change step

• Most results presented based on data collected from three online surveys

 • Trainee Survey

 • Unselected Applicant Survey

 • Faculty Survey
Survey Responses

Distribution of Respondents by SRTI

- ISSH: 7% Applicants (N = 317) vs 20% Trainees (N = 313)
- RCT: 14% Applicants (N = 317) vs 20% Trainees (N = 313)
- ATI: 11% Applicants (N = 317) vs 15% Trainees (N = 313)
- mHealth: 15% Applicants (N = 317) vs 20% Trainees (N = 313)
- TIDIRH: 32% Applicants (N = 317)
- SW: 14% Applicants (N = 317) vs 13% Trainees (N = 313)
- CAD: 2% Applicants (N = 317) vs 5% Trainees (N = 313)
Results—Training Satisfaction

• *Did trainees perceive their training as relevant and useful, and plan to use it in their research?*

 • Measured by post-training satisfaction forms (not online surveys).

 • Trainees were confident about their ability to use knowledge and skills after training ended.

 • Trainees were particularly satisfied with their mentors and group activities.
Results—New Professional Contacts

- *Did trainees make new professional contacts at the institutes?*

 - New contacts were made through mentoring, social networking tools, and connecting with other trainees and faculty at the SRTI.

 - Nearly all trainee survey respondents (97%) reported having some contact with their mentors after training, though most (79%) reported they only had contact a few times.

 - Fewer trainees stayed in contact with their fellow trainees (38%).

 - In total, 17% collaborated on a publication or presentation with a fellow trainee after training.
Results — New Professional Contacts

Helpfulness of Mentor Support Following the training Institute
(N = 313) Mean Scores (1 = Not at all, 5 = A lot)

<table>
<thead>
<tr>
<th>Activity</th>
<th>Mean Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Helped plan and write a scientific research article</td>
<td>2.6</td>
</tr>
<tr>
<td>Helped develop a research grant application to fund a study</td>
<td>3.7</td>
</tr>
<tr>
<td>Helped formulate a research question and specific hypotheses</td>
<td>3.72</td>
</tr>
<tr>
<td>Helped design a research study to address the research question</td>
<td>3.83</td>
</tr>
</tbody>
</table>
Results—Local Support & Challenges

• Did trainees receive support for their research activities once returning to their home research institutions?

• Trainees reported receiving a moderate amount of support after training.

• Trainees from *emerging fields* encountered more obstacles at home than those in *established fields*.
Results—Local Support & Challenges

Trainees Who Encountered Obstacles at Their Home Institution

- CAD: 13%
- RCT: 13%
- ATI: 28%
- SW: 32%
- TIDIRH: 33%
- mHealth: 35%
- ISSH: 68%
Results—Local Support & Challenges

Types of Obstacles Most Commonly Encountered by Trainees When Applying Their Training (N = 103)

- Lack of institutional support: 37%
- Lack of funding: 27%
- Lack of knowledgeable collaborators/colleagues: 23%
- Did not gain transferable skills: 13%
- Too many hurdles/difficulties when applying for NIH grant: 11%
- No mentor: 10%
- Difficult to access resources needed to support application of learning: 9%
- Mechanistic approach of NIH funding opptys not supportive of different approaches: 7%
Results—Grant, Publication & Teaching Activities

- Did trainees use their new knowledge, skills, and contacts to produce field-relevant grant applications, publications, and teaching activities?

 - Trainees were more likely than unselected applicants to apply for a new research grant after training.

 - Trainees published more than unselected applicants, and were more likely to incorporate new research aims on the SRTI topic into their publications.

 - Trainees were more likely to incorporate the SRTI topic into their teaching activities.
Results—Grant Applications

Respondents Who Submitted at Least One New Research Grant Application after Completion of SRTI

*Statistically significant

<table>
<thead>
<tr>
<th>Discipline</th>
<th>Trainees (N=313)</th>
<th>Applicants (N=317)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAD</td>
<td>94%</td>
<td>67%</td>
</tr>
<tr>
<td>RCT</td>
<td>94%*</td>
<td>67%</td>
</tr>
<tr>
<td>ATI</td>
<td>91%*</td>
<td>55%</td>
</tr>
<tr>
<td>TIDIRH</td>
<td>87%*</td>
<td>53%</td>
</tr>
<tr>
<td>mHealth</td>
<td>84%*</td>
<td>65%</td>
</tr>
<tr>
<td>SW</td>
<td>81%*</td>
<td>73%</td>
</tr>
<tr>
<td>ISSH</td>
<td>73%</td>
<td>26%</td>
</tr>
</tbody>
</table>

*Statistically significant
Results—Grant Applications

Proportion of Trainees & Unselected Applicants who were Awarded Grants Before & After SRTI

<table>
<thead>
<tr>
<th>SRTI</th>
<th>Trainees</th>
<th></th>
<th>Unselected Applicants</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Before Institute</td>
<td>After Institute</td>
<td>Before Institute</td>
<td>After Institute</td>
</tr>
<tr>
<td>Established Fields</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ATI (N=395)</td>
<td>24*</td>
<td>18*</td>
<td>11</td>
<td>5</td>
</tr>
<tr>
<td>CAD (n=180)</td>
<td>9</td>
<td>11</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>RCT (n=333)</td>
<td>29</td>
<td>23*</td>
<td>20</td>
<td>12</td>
</tr>
<tr>
<td>SW (n=444)</td>
<td>17</td>
<td>15</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>Emerging Fields</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ISSH (n=313)</td>
<td>17*</td>
<td>16*</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>mHealth (n=435)</td>
<td>22</td>
<td>16*</td>
<td>15</td>
<td>9</td>
</tr>
<tr>
<td>TIDIRH (n=520)</td>
<td>39*</td>
<td>22</td>
<td>17</td>
<td>11</td>
</tr>
</tbody>
</table>

*Statistical significance at p<0.05 for chi square analysis
Results—Grant Awards & Publication Activity

Trainees and Unselected Applicants who Received Grant Funding Before and After SRTI

- Received grant funding before training: 51%
- Received grant funding after training: 52%*

Trainees and Unselected Applicants who Published Before and After SRTI

- Published before: 10%*
- Published after: 22%*

*Statistically significant

Trainees N = 313 Applicants N = 317
Results—Teaching Activities

Respondents Who Increased Their Teaching Activities in the SRTI Topic Area

- Trainees (N=313): 54%*
- Applicants (N=317): 46%

*Statistically significant
Results—Career Advancement

- *Does success with field-relevant research grants, publications, and teaching activities lead to career advancement?*

 - Trainees were more likely than unselected applicants to engage in professional activities in the SRTI topic area.

 - Trainees were more likely to receive recognition from their home institutions for their research activities in the SRTI topic area.

 - Trainees reported that training helped them advance their careers in general, but fewer report that it helped achieve tenure.
Professional activities specifically related to the SRTI topic area

Served as a peer reviewer for a journal: 58% (53% vs 63%, non-statistically significant)
Served as an NIH grant reviewer: 39% (36% vs 41%, non-statistically significant)
Organized activities for a scientific association: 37% (33% vs 40%, non-statistically significant)
Served as a federal (non-NIH) grant reviewer: 33% (29% vs 36%, non-statistically significant)
Served as a member of an editorial board for a journal: 30% (26% vs 33%, non-statistically significant)
Served as a member of a Data Safety Monitoring Board for a clinical trial: 15% (11% vs 17%, non-statistically significant)
Results—Career Advancement

Received recognition from my research institution

- **Trainees:** 20%*
- **Applicants:** 8%

Impact of SRTI on Trainee Career Advancement and Tenure

- **Extent to which the training institute has contributed to advancing my research career in general:**
 - A little: 10%
 - Moderately: 22%
 - A lot: 68%

- **Extent to which the training institute has contributed to obtaining tenure at my research university:**
 - A little: 53%
 - Moderately: 20%
 - A lot: 27%

*Statistically significant
Results—Longer Term Successes

- *Did the program contribute to NIH issuance of new Funding Opportunity Announcements?*

 - 63% of faculty indicated that the SRTIs contributed to new RFAs, PAs, and/or PARs in their targeted research fields.
Results—Longer Term Successes

SRTI Contributed to New Funding Opportunities (N=313)

- ATI: 67%
- RCT: 67%
- SW: 58%
- CAD: 50%
- TIDIRH: 85%
- ISSH: 68%
- mHealth: 33%
Lessons Learned / Next Steps
Recommendations / Lessons Learned

• SRTI trainings should continue into the future.

• SRTI program design and evaluation should be further refined.
 • Incorporate formal mentoring into all SRTIs.
 • Encourage mentoring beyond the formal training period.
 • Use a common post-training evaluation instrument.

• Promote institutional support for trainees at home.

• Continue to assess the value of the SRTIs.
 • Deeper analyses of grant and publication activity.
 • Expand time frame of analyses.
 • Compare data from surveys and independent sources.
 • Explore use of new analytic tools.
Thank you
Acknowledgements

Madrillon Group
Marietta Damond
Jack Scott
Margaret Blasinsky
Mary Dufour

Evaluation Advisory Committee (EAC)
Stephane Philogene
Catherine Stoney
Peter Kaufmann
Valerie Maholmes
Sarah Kobrin
Helen Meissner
Patty Mabry

OBSSR
Stephane Philogene
Jaclyn Crouch
Jim Corrigan
Katie Morris

One Percent Evaluation Set-Aside Program
Rosanna Ng & OE Team
For More Information—Contact Us

Stephane Philogene: stephane.philogene@nih.gov
Jim Corrigan: james.corrigan@nih.gov
Katie Morris: kathryn.morris@nih.gov
Final Thoughts?

Questions and Comments?