The Precision Medicine Initiative®
Cohort Program

Josephine Briggs, MD
Interim Director, NIH PMI Cohort Program
The challenges ...

- Many diseases lack effective prevention strategies, diagnostics, or treatments
 - Options fail to consider key differences among individuals: genes, lifestyle, environment
- Participants in biomedical research often treated as “subjects,” not partners
- Research findings take too long to be implemented into clinical practice
- Need to look beyond the genome
FY16 NIH PMI Appropriation

<table>
<thead>
<tr>
<th>PMI Cohort Program</th>
<th>$130 million</th>
</tr>
</thead>
<tbody>
<tr>
<td>PMI for Oncology</td>
<td>$70 million</td>
</tr>
<tr>
<td>TOTAL</td>
<td>$200 million</td>
</tr>
</tbody>
</table>

Other agencies part of President’s PMI too:

- FDA
- ONC
- OCR
- etc.
Precision Medicine Initiative®: The Time Is Now

<table>
<thead>
<tr>
<th></th>
<th>Ten Years Ago</th>
<th>Now – 2014 (most recent data)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cost of sequencing a human genome</td>
<td>$22,000,000</td>
<td>$1,000 - $5,000</td>
</tr>
<tr>
<td>Amount of Time to Sequence a Human Genome</td>
<td>2 years</td>
<td><1 day</td>
</tr>
<tr>
<td>Number of smart phones in the United States</td>
<td>1 million (<2%)</td>
<td>160 million (58%)</td>
</tr>
<tr>
<td>EHR Adoption (% hospitals)</td>
<td>20-30%</td>
<td>>90%</td>
</tr>
<tr>
<td>Computing Power</td>
<td>n</td>
<td>n x 16</td>
</tr>
<tr>
<td>Participant & Patient Engagement</td>
<td>Expectations continually rising</td>
<td></td>
</tr>
</tbody>
</table>
PMI Core Values

1. Participation is **open** to interested individuals
2. Representing the **rich diversity** of America is essential
3. Participants are **partners** in all phases of the cohort program
4. Participants have **access to study information** and data about themselves
5. Data can be **accessed broadly** for research purposes
6. Adherence to the PMI **privacy principles** and forthcoming **security framework**
7. PMI is a **catalyst** for progressive research programs and policies
Advisory Committee to the NIH Director
Precision Medicine Initiative® Working Group

Co-Chairs:
Richard Lifton, MD, PhD, Yale University School of Medicine, New Haven, CT
Bray Patrick-Lake, MFS, Duke University, Durham, NC
Kathy Hudson, PhD, National Institutes of Health, Bethesda, MD

Members:

• Esteban Gonzalez Burchard, MD, MPH
 University of California, San Francisco

• Tony Coles, MD, MPH
 Yumanity Therapeutics, Cambridge, MA

• Rory Collins, FMedSci
 University of Oxford, UK

• Andrew Conrad, PhD
 Google X, Mountain View, CA

• Josh Denny, MD
 Vanderbilt University, Nashville, TN

• Susan Desmond-Hellmann, MD, MPH
 Gates Foundation, Seattle, WA

• Eric Dishman
 Intel, Santa Clara, CA

• Kathy Giusti, MBA
 Multiple Myeloma Res Foundation, Norwalk, CT

• Sekar Kathiresan, MD
 Harvard Medical School, Boston, MA

• Sachin Kheterpal, MD, MBA
 University of Michigan Medical School, Ann Arbor

• Shiriki Kumanyika, PhD, MPH
 U Penn Perelman School of Medicine, Philadelphia

• Spero M. Manson, PhD
 University of Colorado, Denver

• P. Pearl O’Rourke, MD
 Partners Health Care System, Inc., Boston, MA

• Richard Platt, MD, MSc
 Harvard Pilgrim Health Care Institute, Boston, MA

• Jay Shendure, MD, PhD
 University of Washington, Seattle

• Sue Siegel
 GE Ventures & Healthymagination, Menlo Park, CA
Charge to the PMI Working Group of the ACD

To develop a vision for the PMI Cohort Program and advise on the design of a longitudinal national research cohort of ≥1 million volunteers

- Leverage existing cohorts, start from scratch, or hybrid?
- How to capture the rich diversity in the U.S. population?
- What data types should be included?
- What policies need to be in place for maximal benefit?
Inputs

- **Workshops**
 - Unique Scientific Opportunities for the National Research Cohort (April 28-29, NIH, Bethesda, MD)
 - Digital Health Data in a Million-Person Precision Medicine Initiative (May 28-29, Vanderbilt University, Nashville, TN)
 - Participant Engagement and Health Equity (July 1-2, NIH, Bethesda, MD)
 - Mobile and Personal Technologies in Precision Medicine (July 27-28, Intel Corp., Santa Clara, CA)

- **Requests for Information**
 - Building the cohort
 - Strategies to address community engagement and health disparities

- FNIH Survey of public perceptions of precision medicine cohort
- White House Privacy and Trust Principles
FNIH Survey of public opinion on a large US cohort study

- 79% agree cohort probably/definitely should be done
- 54% would probably/definitely participate in the cohort

What motivates participation?
- 82% interested in receiving results of study
- 62% wish to help advance health research

- 71% said participants should be partners with researchers
The Precision Medicine Initiative Cohort Program – Building a Research Foundation for 21st Century Medicine

Precision Medicine Initiative (PMI) Working Group Report to the Advisory Committee to the Director, NIH

September 17, 2015
Scientific Opportunities in the PMI Cohort Program

- Develop quantitative estimates of risk for a range of diseases by integrating environmental exposures, genetic factors and gene-environment interactions
- Identify the causes of individual variation in response to commonly used therapeutics (pharmacogenomics)
- Discover biological markers that signal increased or decreased risk of developing common diseases
- Use mobile health (mHealth) technologies to correlate activity, physiological measures and environmental exposures with health outcomes
- Develop new disease classifications and relationships
- Empower study participants with data and information to improve their own health
- Create a platform to enable trials of targeted therapies
Recommendations for assembling the PMI Cohort

- **One million or more U.S. volunteers**
 - Broadly reflect the diversity of America (including family members of all ages, health statuses, areas)
 - Strong focus on underrepresented groups

- **Longitudinal cohort**, with continuing interactions, recontactable for secondary studies
 - Collect EHR data, provide biospecimen(s) and survey, and complete a baseline exam

- **Two methods of enrollment**
 - Direct volunteers: anyone can sign up
 - Healthcare provider organizations (incl. FQHCs): diverse participants, robust EHRs, participant follow-up

- **Substantial participant engagement** in development, implementation, governance
Benefits of Approach

- Large and diverse
 - Less costly and less difficult than representative sample (which is rarely achievable)
 - Able to generate estimates of effect/association
 - Permits well-powered samples
- Support focus on underserved and underrepresented populations
- Prospectively understand resistance to & development of diseases
- Complement (not duplicate) existing disease-specific cohorts
Initial Core Data Set

- Centrally collected and stored in a Coordinating Center
- Align with other data sets when possible
- Leverage existing data standards and common data models when possible

<table>
<thead>
<tr>
<th>Data Source</th>
<th>Data Provided</th>
</tr>
</thead>
<tbody>
<tr>
<td>Self report measures</td>
<td>Diet, substance use, self-report of disease and symptoms (e.g., cognitive or mood assessment)</td>
</tr>
<tr>
<td>Baseline health exam</td>
<td>Vitals (e.g., pulse, blood pressure, height, weight), medical history, physical exam</td>
</tr>
<tr>
<td>Structured clinical data (EHR)</td>
<td>ICD and CPT codes, medication history, select laboratory results, vitals, encounter records</td>
</tr>
<tr>
<td>Biospecimens</td>
<td>Blood sample</td>
</tr>
<tr>
<td>mHealth data</td>
<td>Passively-collected data (e.g., location, movement, social connections) from smartphones, wearable sensor data (activity, hours and quality of sleep, time sedentary).</td>
</tr>
</tbody>
</table>
Information Flow In

Direct Volunteers

Self-report Measures
- mHealth Data
- Consent
- EHR Data
- Baseline Exam
- Biospecimens

HPO Volunteers

16
Possible data sources for the PMI Cohort

<table>
<thead>
<tr>
<th>Data Source</th>
<th>Example Data Provided</th>
</tr>
</thead>
<tbody>
<tr>
<td>Self report measures</td>
<td>Diet, substance use, self-report of disease and symptoms (e.g., cognitive or mood assessment)</td>
</tr>
<tr>
<td>Structured clinical data (EHR)</td>
<td>ICD and CPT codes, medication history, laboratory results, vitals, encounter records</td>
</tr>
<tr>
<td>Unstructured clinical data (EHR)</td>
<td>Narrative documents, images, EKG and EEG waveform data</td>
</tr>
<tr>
<td>Biospecimens</td>
<td>Blood sample, microbiome, nail and hair for environmental exposures over time</td>
</tr>
<tr>
<td>mHealth and sensor data</td>
<td>Passively-collected data (e.g., location, movement, social connections), wearable sensor data (activity, calories expended, hours and quality of sleep, time sedentary).</td>
</tr>
<tr>
<td>Healthcare claims data</td>
<td>Billing codes as received by public and private payors, outpatient pharmacy dispensing</td>
</tr>
<tr>
<td>Geospatial and environmental data</td>
<td>Weather, air quality, environmental pollutant levels, food deserts, walkability, population density, climate change</td>
</tr>
<tr>
<td>Other data</td>
<td>Social networking e.g., Twitter feeds, over-the-counter medication purchases</td>
</tr>
</tbody>
</table>
Information Flow Out

Volunteers → Data → Public → Results → Researchers

Data Flow: Volunteers contribute data, which is processed and shared with the public. The results are then analyzed by researchers.
Return of Results and Data

- Participants may receive, depending on their preferences:
 - Individual data
 - Individual health information
 - Ongoing study updates
 - Aggregated results
Participant Engagement in the PMI Cohort Program

- Participant substantially represented at all junctures
 - Governance, incl. Return of Results, Data, Resource Access, Biobanking, Security
 - Design of cohort
 - Conduct of research
 - IRB
 - Dissemination of results
 - Evaluation of program
 - Build a strong foundation of trust

- Core requirement for participating entities
- Focus of launch phase
Policy for the PMI Cohort Program

- Policy needs for PMI Cohort Program:
 - Single Institutional Review Board (IRB)
 - Privacy and security
 - Standards for data security
 - Safeguards against unintended data release
 - Penalties for unauthorized re-identification
 - Share results and provide access to data
 - Clarify CLIA and HIPAA

- Special policy considerations about enrollment/retention of:
 - children
 - decisionally impaired
 - participants who become incarcerated
PMI Cohort Program Governance

- Governance structure
 - PMI Cohort Program Director
 - PMI Cohort Program Advisory Panel
 - Executive Committee
 - Steering Committee with five subcommittees
 - Return of results and information
 - Data
 - Biobanking
 - Resource Access
 - Security

- Maintain interagency coordination
Initial Vision for Implementation

- Direct volunteer enrollment
- FQHC enrollment
- Large HPO enrollment
- Communications/Outreach/Engagement
 - Web portal
 - Exams
 - Biobank
- PMI Staff Governance
- Protocol
- IRB
- Coordinating Center
- Lab stuff (SNPs, etc.)
- You are here

Time

You are here
Governance

NIH Director

PMI Cohort Program Director and Program Office

Council of Councils

PMI Cohort Program Advisory Panel

Executive Committee

Steering Committee

Working Group

PMI Cohort Program Awardees
PMI Cohort Program

- Coordinating Center
 - Large HPOs
 - Direct Volunteers
 - FQHCs
 - Participant Technologies Center
 - Biobank
 - DV Health Exams & Specimens
 - Laboratory Analyses

- FOAs Out
- Under development
Projected Enrollments

<table>
<thead>
<tr>
<th>Entry point to cohort</th>
<th>2016</th>
<th>2017</th>
<th>2018</th>
<th>2019</th>
</tr>
</thead>
<tbody>
<tr>
<td>HPOs</td>
<td>28,000</td>
<td>196,000</td>
<td>448,000</td>
<td>595,000</td>
</tr>
<tr>
<td>Direct volunteers</td>
<td>50,000</td>
<td>150,000</td>
<td>252,000</td>
<td>352,000</td>
</tr>
<tr>
<td>FQHCs</td>
<td><1,000</td>
<td>51,000</td>
<td>101,000</td>
<td>151,000</td>
</tr>
<tr>
<td>TOTALS</td>
<td>~79,000</td>
<td>397,000</td>
<td>801,000</td>
<td>1,098,000</td>
</tr>
</tbody>
</table>
January 2015 President launches Precision Medicine Initiative®
March 2015 NIH names ACD PMI Working Group
September 2015 ACD receives and approves PMI Working Group Report
November 2015 6 funding opportunities issued
December 2015 PMI Cohort Program Advisory Panel convened
January 2016 Search for Director closed
January 2016 1st & 2nd level review for pilots
February 2016 Pilot awards made
PMI Cohort Program Advisory Panel

Lon Cardon, Ph.D.
GlaxoSmithKline

Alta Charo, J.D.
University of Wisconsin

Tony Coles, M.D., M.P.H.
Yumanity Therapeutics

Rory Collins, FRS
University of Oxford

Eric Dishman
Intel

Alejandra Gepp, M.A.
National Council of La Raza

Sachin Kheterpal, M.D., M.B.A.
University of Michigan Medical School

Marie Lynn Miranda, Ph.D.
Rice University

Bray Patrick-Lake, M.F.S.
Duke University

Dara Richardson-Heron, M.D.
YWCA

Gregory Simon, M.D., M.P.H.
Group Health Research Institute

Sharon Terry, M.A.
Genetic Alliance

David Williams, Ph.D., M.P.H.
Harvard University
Coordinating Center: Administrative Core

- **Scientific & Administrative leadership**
 - Co-chair Steering and Executive Committees
 - Ensure effective transition from pilot phase
 - Coordinate core protocol development
 - Monitor enrollment, retention, and protocol implementation from both DV and HPO participants

- **Direct Volunteer Operations**
 - Point-of-contact for direct volunteers
 - Schedule & track biospecimens and physical evaluations

- **Healthcare Provider Organization (HPO)-related Operations**
 - Ensure effective protocol implementation and consistent patient engagement strategies
Coordinating Center: Data Core

General functions

- Develop & maintain all shared scientific and management data
- Develop and oversee implementation of a common data model
- Establish standards and implement processes for federated data
- Establish and implement standards for RUID, consent preferences, self-report, clinical & biospecimen data, return of results
- Oversee all aspects of data security
- Oversee all aspects of participant privacy protection

Health IT Specific Operations

- Provide effective interfaces that facilitate integration of data from health IT records both from HPOs and from DV (Blue Button) records
Coordinating Center: Research Support Core

- Establish and oversee secure computing environment
- Define analytical capabilities for data core
- Develop software tools & algorithms for datasets
- Provide all needed researcher-focused services
- PoC for all users at all levels of sophistication to design and implement studies using the PMI Cohort Program datasets and technical issues
- Provide interface to future –omics lab services
- Oversee the development, analysis and quality assessment of cohort-wide lab analysis
Establish structures to enroll participants, including family members and meeting diversity targets

Establish effective local participant engagement, monitor participant enrollment and retention:
- UG3: >10K expected enrollees
- UH3: >35K expected enrollees/yr

Conduct baseline physical evaluation on all enrolled participants

Collect baseline biospecimens on all enrolled participants; legacy biospecimens will not be used

Establish methods to capture complete health care information of all enrolled participants, both ongoing and when possible legacy data

Develop methods to transmit health care information to CC in standardized format, meeting interoperability standards across the consortium
- Standards for EHR capture and representation of family health history
- SNOMED CT and HL7 Version 3
Develop, upgrade mobile applications developed in pilot phase for DV enrollment, supporting their use for entire cohort

Provide parallel platforms for non-smartphone users (e.g., feature phones, web site)

Provide scientific leadership and technical expertise for use of mHEALTH technologies across the cohort
 – Develop, pilot and implement use across the cohort of data acquisition from a wide array of potential participant technologies,
 – Devices should include participants own devices, novel sensors and wearable devices

Test emerging technologies for study deployment, validate, and co-calibrate emerging technologies with existing technologies to ensure continuity of trend data over time
Biobank (U24)

- Provide biospecimen collection kits and mailers
- Receive, process, store, and distribute:
 - Phase 1: receive saliva or blood
 - Phase 2: plasma, serum, RBCs, buffy coats, urine, DNA
- Establish automation of specimen aliquoting, DNA extraction initially; Transition to automated specimen retrieval systems, when it is cost effective
- Set up information systems for sample tracking, coordinating RUIDs with CC as well as other PMI Cohort Program sites
- Establish robust QA and QC, CLIA processes
Direct Volunteers Specimen Collection and Physical Evaluation

- It will be essential to develop an effective strategy to provide the simple physical evaluation and biospecimen collection from volunteers living anywhere in the US.
- Partnerships with a variety of organizations are possible.
- NIH issued RFI (NOT-OD-15-107) asking for input on how to achieve this part of the program cost effectively.
Direct Volunteers Pilot Studies (OT)

- Develop and test innovative methods and technologies for data collection and management, and participant engagement
 - Website to engage potential volunteers
 - Participant interface optimized to keep participants engaged and return information
 - Pilot expansion of recruitment to family members
 - Data structures ensure the secure collection and sharing
 - Approaches for biospecimen collection
Communication Support (OT)

- Support communication efforts for the PMI research programs at NIH, with particular emphasis on the PMI Cohort Program
 - Communications planning, message and visual identity development
 - Collection and analysis of evaluation metrics.
 - Outreach through a variety of strategies and platforms
Other Transaction Authority

- Designed to obtain cutting edge technology, often from non-traditional sources, and to allow a high degree of flexibility
PMI Cohort Program Funding Opportunities

<table>
<thead>
<tr>
<th>Title / Type</th>
<th>Year 1 $</th>
<th>Number of awards</th>
<th>Project Period</th>
<th>Application</th>
<th>Award</th>
</tr>
</thead>
<tbody>
<tr>
<td>Direct Volunteers Pilot Studies (OT)</td>
<td>TBD</td>
<td>1</td>
<td>1 yr</td>
<td>December 22, 2015</td>
<td>February 2016</td>
</tr>
<tr>
<td>Communication Support for the Precision Medicine Initiative Research Programs (OT)</td>
<td>TBD</td>
<td>1</td>
<td>2 yrs</td>
<td>December 22, 2015</td>
<td>February 2016</td>
</tr>
<tr>
<td>PMI Cohort Program Biobank (U24)</td>
<td>$15 M</td>
<td>1</td>
<td>5 yrs</td>
<td>February 4, 2016</td>
<td>June 2016</td>
</tr>
<tr>
<td>PMI Cohort Program Coordinating Center (U2C)</td>
<td>$21 M</td>
<td>1</td>
<td>5 yrs</td>
<td>February 17, 2016</td>
<td>July 2016</td>
</tr>
<tr>
<td>PMI Cohort Program Healthcare Provider Organization Enrollment Centers (UG3/UH3)</td>
<td>$28 M</td>
<td>≤7</td>
<td>5 yrs</td>
<td>February 17, 2016</td>
<td>July 2016</td>
</tr>
<tr>
<td>PMI Cohort Program Participant Technologies Center (U24)</td>
<td>$8 M</td>
<td>1</td>
<td>5 yrs</td>
<td>February 17, 2016</td>
<td>July 2016</td>
</tr>
</tbody>
</table>
Timeline

2016

Direct Volunteer Pilot Phase

2016

FOA
Award
Pilot testing
Transition to CC

Coordinating Center

HPOs, Biobank, Participant Technologies

Explore
Pilot sites
FQHCs

Expansion

Awards
Integrate DV Pilot

FOAs
Applications
Achieving the bigger vision: More to come...

- PMI Cohort Program IRB
- PMI Cohort Program Office creation
- Synch-4-Science Pilots
- Convert FQHC Pilots into full implementation
- Health exam and biospecimen capabilities for direct volunteers
- Engage physicians, nurses, and other community medical providers
- Research use of the Cohort
What will the PMI Cohort Program have accomplished by Dec. 2016?

- Direct volunteer recruitment and engagement strategies pilot completed
- Pilot results used to design and launch scale up of the direct volunteer program
- Strong partnerships with 5-7 major Healthcare Provider Organizations
- Successful implementation of test recruitment sites in 5 FQHCs
- ~79,000 engaged participants fully consented and enrolled in the Cohort
- Collection of biospecimens from at least 25,000
- Sync4Science FHIR method pilot complete
- Functioning data platform to allow collection of different types of data
 - Secure environment accessible to researchers
 - Participants see info about themselves according to their preferences
- 8-10 research studies using cohort data underway
Thank you!