KOMP THE VISION AND THE FUTURE

Council of Councils 5-2017

The vision for KOMP was articulated in a meeting at the Banbury Center, Cold Spring Harbor in 2003, calling for high throughput production of gene knockouts, and phenotyping, for every gene in the mouse genome.

- Provides access to unannotated genes by providing hypothesis testing and tools
- Provides new insights into pleiotropy

 Provides access to unannotated genes by providing hypothesis testing and tools

Nature Commentary Too many roads not taken

Most protein research focuses on those known before the human genome was mapped. Work on the slew discovered since, urge **Aled M. Edwards** and his colleagues.

FONDLING OUR PROBLEMS

Researchers' 'favourite kinases' have remained the same for decades with a few exceptions (kinases linked to diseases of great interest to industry).

TOOLS ARE TELLING

The availability of research tools influences a protein's popularity.

 Provides access to unannotated genes by providing hypothesis testing and tools

Genome-wide Generation and Systematic Phenotyping of Knockout Mice Reveals New Roles for Many Genes White et al., CELL 154, 452-464, July 2013

> line for a broad range of traits. We found that hitherto unpublished genes were as likely to reveal phenotypes as known genes, suggesting that novel genes represent a rich resource for investigating the molecular basis of disease. We found many unexpected phenotypes detected only because we screened for

- Provides access to unannotated genes by providing hypothesis testing and tools
- Provides new insights into pleiotropy

- Provides access to unannotated genes by providing hypothesis testing and tools
- Provides new insights into pleiotropy

- Eliminates duplication and waste
- Sets the standard for reproducibility
- Includes sex as a biological variable

• Eliminates duplication and waste

There has been **extensive** retargeting of mouse genes

Sharing has been very limited

As of 2005, 4848 unique targeted and/or trapped genes revealed that 2655 lines were re-targeted and 702 were targeted greater than 3 times. Even though these are published KOs, only 584 unique genes were in repositories (12%). In summary, each KO is targeted twice on average, and lack of sharing is a common complaint.

To enforce sharing and thereby eliminate retargeting, the community endorsed "repatriation" of published KOs into repositories –

The Deltagen/Lexicon Repatriation Project The KOMP60 Repatriation effort The BP/AI Repatriation effort The KOMP Sharing Plan The Cryopreservation supplement effort

• Eliminates duplication and waste

- Eliminates duplication and waste
- Sets the standard for reproducibility

- Eliminates duplication and waste
- Sets the standard for reproducibility

PERSPECTIVE						
🍫 N	/IPC	SEARCH	ABOUT IMPC	NEWS & EVENTS	CONTACT	MY IMPC
Home » Abou Applying the ARRIVE guidelines to an <i>in vivo</i> database.						
ARRI	Authors¶					
	Natasha A. Karp*1, Terry F. Meehan2, Hugh Morgan3, Jeremy C. Mason2, Andrew Blake3,					
	Natalja Kurbatova ² , Damian Smedley ¹ , Julius Jacobsen ¹ , Richard F. Mott ⁴ , Vivek Iyer ⁵ , Peter					
	Matthews ⁵ , David G. Melvin ¹ , Sara Wells ³ , Ann M. Flenniken ⁶ , Hiroshi Masuya ⁷ , Shigeharu					
				11 10 C T D	1110 011	10 1 11

- Eliminates duplication and waste
- Sets the standard for reproducibility
- Includes sex as a biological variable

- Eliminates duplication and waste
- Sets the standard for reproducibility
- Includes sex as a biological variable

Relevance to Animal Genetics

Arlinda Chief and his Apaf1 mutation

Identification of a nonsense mutation in APAF1 that is likely causal for a decrease in reproductive efficiency in Holstein dairy cattle. <u>J Dairy Sci.</u> 2016 Aug;99(8):6693-701.

"The reason we had a candidate so quickly was because of the tremendous investment in mouse genetics," says Lewin.