KOMP2...A translational scientific resource to catalyze biomedical research and accelerate precision medicine

Kent Lloyd

University of California, Davis Director, Mouse Biology Program PI/PD, DTCC-KOMP2 Consortium

> NIH Council of Councils May 26, 2017

KOMP2 Participants: Production & Phenotyping Project Centers Project Components

PI/PD: Arthur Beaudet Steve Brown

PI/PD: Robert Braun Steve Murray Karen Svenson

PI/PD: Kent Lloyd Colin McKerlie

KOMP2 Participants: Data

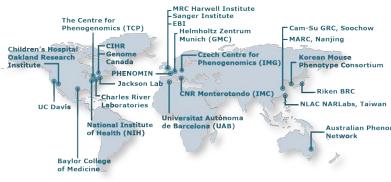
PI/PD: Paul Flicek

www.impc.org

- SEARCH

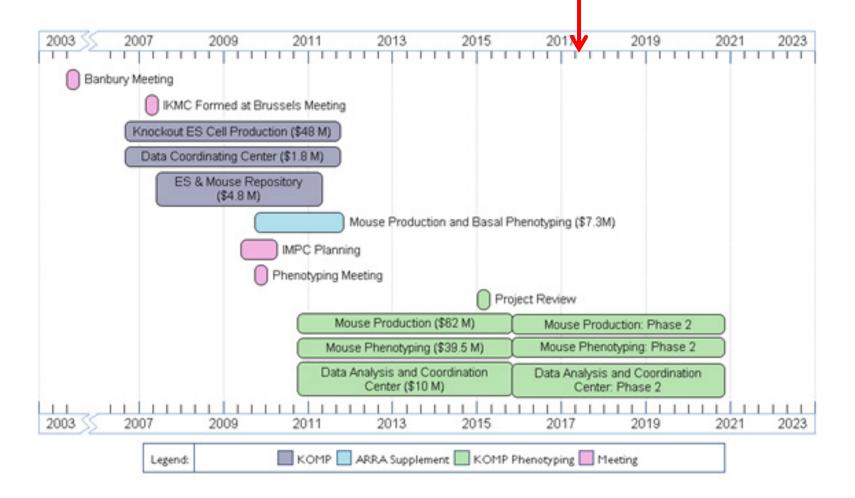
ABOUT IMPC NEWS & EVENTS CONTACT MY IMPC VIGNETTES

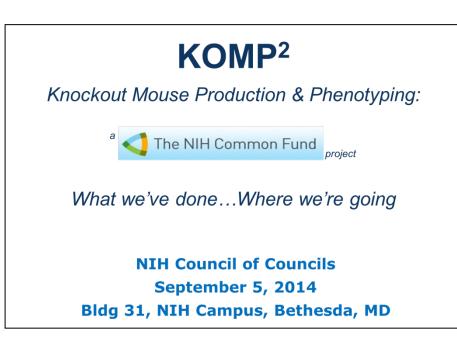
Login ®Register


Produce and phenotype knockout mouse lines for 20,000 genes

Searc

Examples: Ap4e1, Abnormal Heart Rate, Bernard-Soulier Syndrome

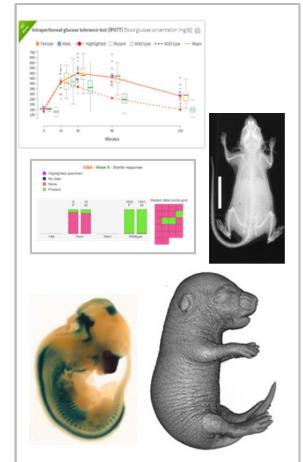

	Find	Human Diseases	Order Models	Tweets by @impc
tC, Soochow jing Mouse pe Consortium en BRC	 Genes Phenotypes Gene expression Embryonic phenotypes Biological systems phenotypes 	 Rare Human Diseases 4601 human diseases associated with IMPC mouse models 	 Mouse lines ES cells targeting vectors 	MPC Bimpo Dont forget our live #webinar tomorrow & discover how IMPC is linking #phenotype, #genotype, #genotype, bibly biblyIMPCwebinar
ARLabs, Taiwan	About	Analyze	More	
Australian Phenomics Jetwork	 What is IMPC? What does IMPC do? How does IMPC work? IMPReSS phenotyping pipeline How to explore? 	 Tools Data release statistics Data download 	Consortium publications All publications IDG orthologs IMPC Presentations IMPC YouTube channel # Contact / feedback	Embod View on Twitt


KOMP2 Project Timeline

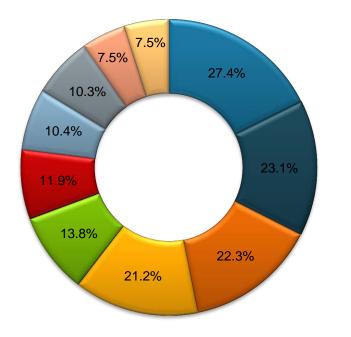
- Month 70 of 120

Last time at Council...2014

- <2,000 lines produced from ESC
- ~100 lines phenotyped
- 30% embryo lethal
- Coordination within IMPC
- Website/data portal launched
- 1,237 orders received
- Few dozen publications
- Piloting CRISPR/Cas9

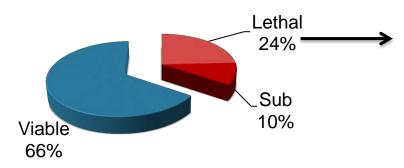


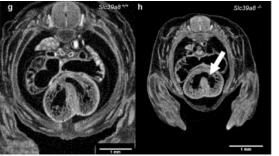
The CF KOMP² Project...


discovering new knowledge about gene function

Today...2017

- >5,000 (2000) lines produced (ESC and CRISPR)
- 4,708 (100) lines phenotyped (~144K mice)
- ~500 phenotyping parameters
- >37.5million data points
- 28,406 phenotype annotations
- 270,800 images
- 3,642 (1,200) orders received
- Fully adopted CRISPR/Cas9 exdel allele
- Added late onset phenotyping pipeline
- 34 consortium publications; 1,189 user publications
- Mature organization: 16 centers, 13 countries, 4 continents




Top 10 adult abnormal phenotypes

- homeostasis/metabolism
- behavior/neurological
- hematopoietic system
- skeleton
- ∎immune system
- vision/eye
- growth/size/body region
- adipose tissue
- cardiovascular system
- ■limbs/digits/tail

About **one-third** of IMPC KO strains are **embryonic lethal or subviable**. imaging technologies are employed to analyse structural dysmorphologies.

Coronal sections through micro-CT volumes of mutant and control Slc39a8 E14.5 embryos revealed heart morphological defects including ventricular septal defects (white arrow),

M Dickinson et al. 2016, Nature

KOMP2 Phase 1 Goals 2011- 2015

- Produce 2,500 knockout strains
 - Ensure equal availability to research scientists
- Phenotype 2,500 knockout strains
 - Standardized procedures, harmonized protocols
 - Sex-balanced cohorts, blinded and random testing
 - Lethal knockouts analyzed at embryonic stages
- Disseminate data through Web portal
 - Real-time data access to all, without restriction
 - Include metadata, statistical analysis

KOMP2 Phase 2 Goals 2016- 2021

- All Phase 1 goals, plus...
- Produce 3,000* more knockout lines
 - Generated using CRISPR/Cas9 technology
- Phenotype 3,000 more knockout lines
 - 15% of lines analyzed while aging
- Disseminate data through Web portal
 - Provide clinical interpretation and insights

*Original plan: 6,000 more lines

Reproducibility: Standardized, harmonized protocols

Procedures linked to behaviour/neurological phenotypes
Embryo pipeline
Gross Morphology Embryo E9.5-E15.5
Histopathology Embryo E9.5
Adult pipeline
Acoustic Startle and Pre-pulse Inhibition
Auditory Brain Stem Response
Gross Pathology and Tissue Collection
Brain Histopathology
Organ Weight
Eye Morphology
Indirect ophthalmoscopy
Calorimetry
Electroconvulsive Threshold Testing
Food efficiency
Combined SHIRPA and Dysmorphology
Grip Strength
Hole-board Exploration
Hot Plate
Light-Dark Test
Open Field
Rotarod
Sleep Wake
Slit Lamp
Tail Flick
Tail Suspension

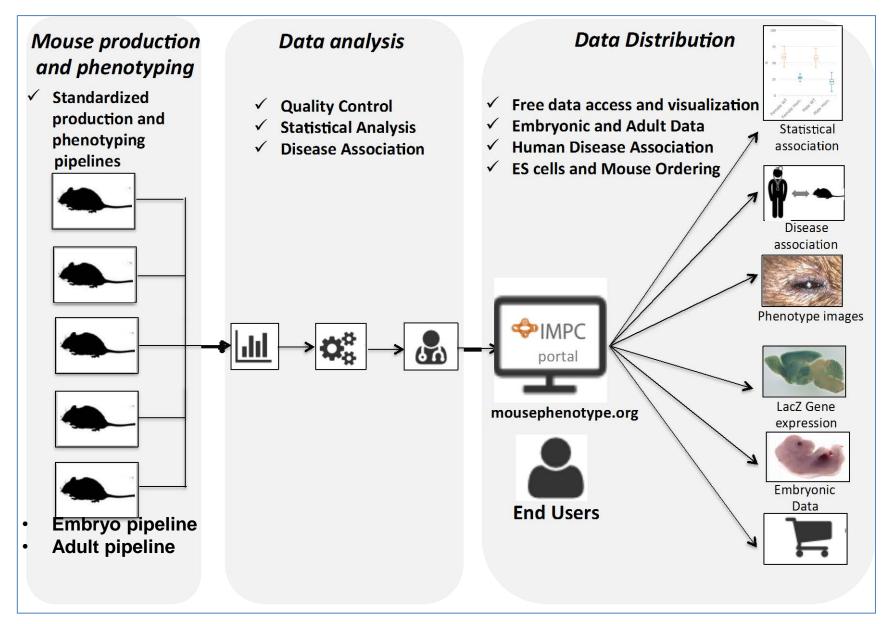
Grip Strength IMPC_GRS_001

- Purpose
- Experimental Design
- Equipment
- Procedure
- Notes
- Parameters
- Metadata

Purpose

The grip strength test is used to measure the neuromuscular function as maximal muscle strength of forelimbs and combined forelimbs and hind limbs. These are assessed by the grasping applied by the mouse on a grid that is connected to a sensor. Three trials are carried out in succession measuring forelimb-strength only, followed by three successive trials measuring the combined forelimb/hindlimb grip strength. All grip strength values obtained are normalized against mouse body weight.

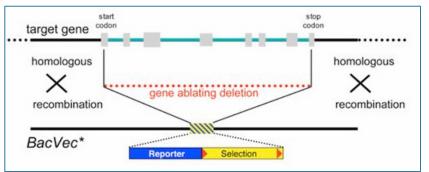
Ontological description: MP:0001515 - abnormal grip strength.

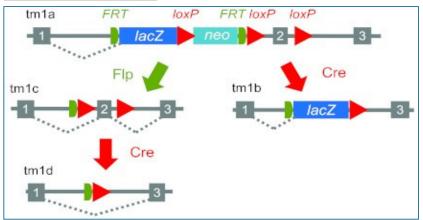

Experimental Design

Minimum number of mutant animals: 7 mice for each sex.

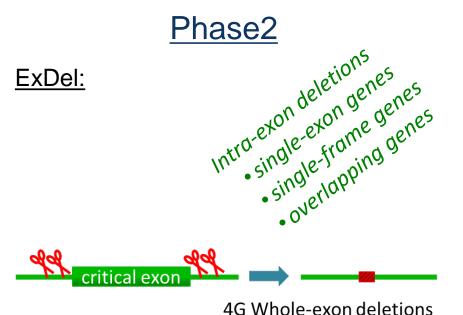
Age of animal: 9 weeks.

Sexual dimorphism: Yes.


Data flow


KOMP2 Production:

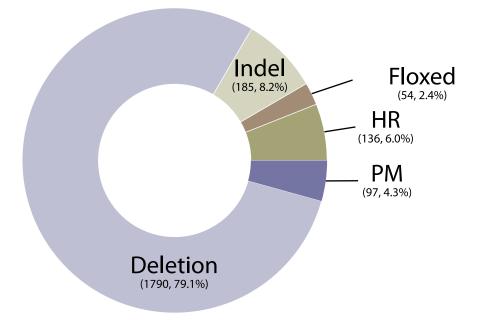
Phase1


Definitive-null:

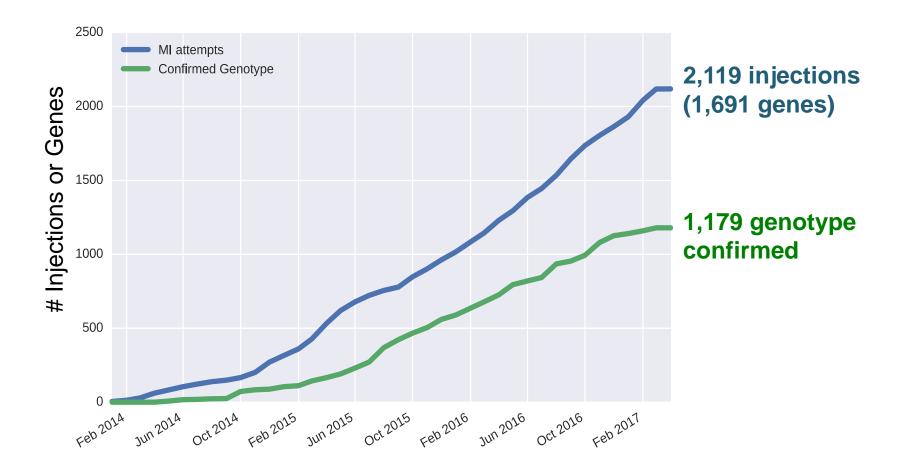
Knockout-first:

Phase 1 mice made from alleles generated by homologous recombination in ES cells

- Straight-forward to design
- Efficient
- Deletion of critical exons to generate null
- Screening by end-point PCR
- Screening protocols become genotyping protocols
- QC via direct sequencing of deletion amplicon
- Alleles are standardized by design

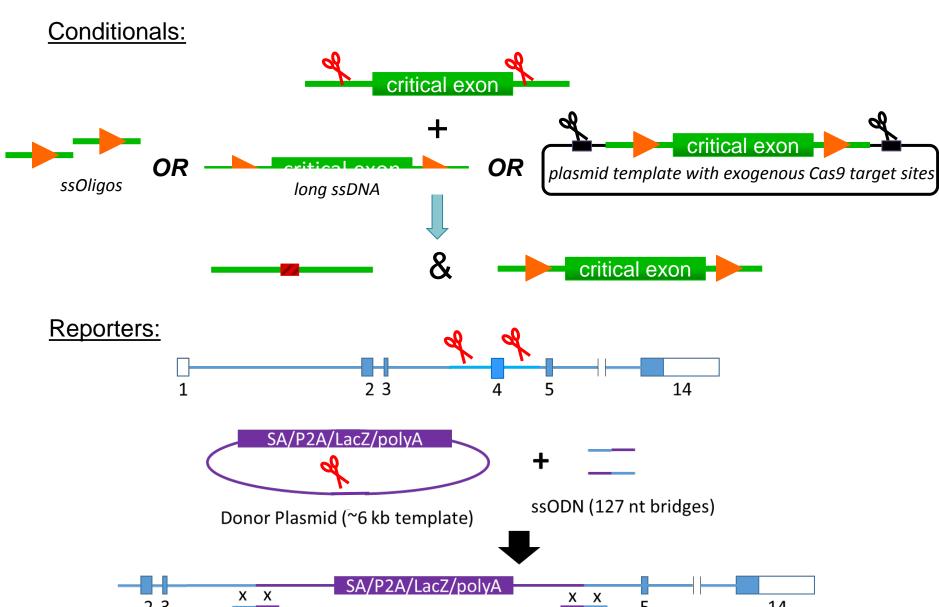

Phase 2 mice made from newly made exdel alleles generated by CRISPR/Ca9 in zygotes

KOMP2 Production using CRISPR*

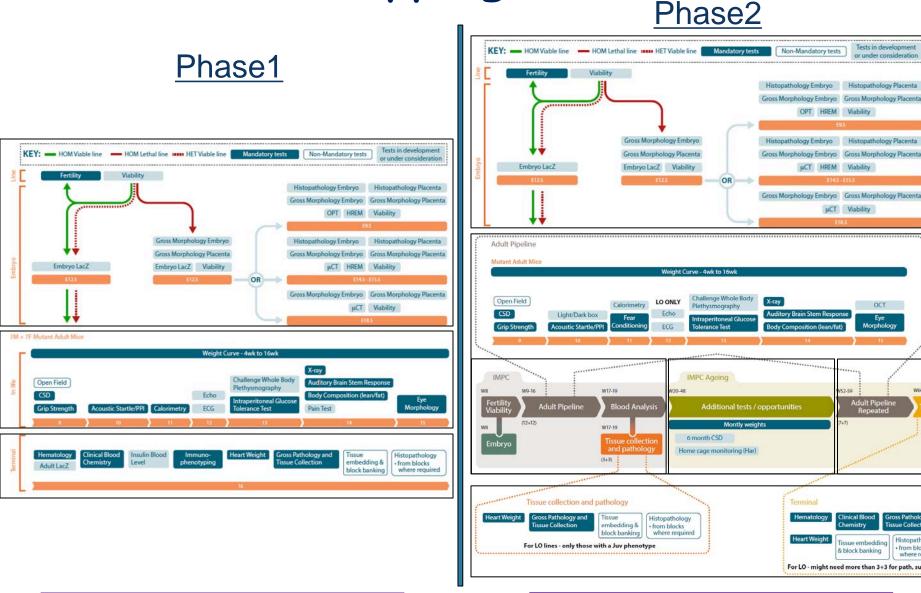

*International Microinjection Tracking System

Gene Status Summary – Oct 6, 2016

Status in IMITS*	Unique Genes		
Genes assigned	1971		
Genes injected	1025	~1.20 injections/gene	
Genes @ microinjection	138		
Genes @ founders	120		
Genes @ GLT	617		
Genes @ MI aborted	152	80% GLT for genes complete	
		<i>cf.</i> ~50% GLT for ES cells	


KOMP2/IMPC Production by Month

CRISPR adopted, piloted, implemented, high throughput--<2 years


L Nutter, G Clark, 2017, paper in progress

Allele Technology Development

Elect	rop	orati	on		
		Process Efficiency		Process Success	
UCD (6 pulses, 3msec, 4G)	Genes	ExDel/ Treated Zyg	ExDel/ Zyg Trns	ExDel/ Pup	
sgRNA/Cas9mRNA/Inj	226	1.7% 229/13231	2.4% of 9603	11% of 2008	
sgRNA 8uM/Cas9Prot 8uM/Elec	63	3.6% 118/3274	5.6% of 2113	17% of 7 14	
MR sgRNA 8uM/Cas9Prot 8uM/Elec	14	2.5% 8/320	3.2% of 252	12% of 69	
sgRNA 16uM/Cas9Prot 16uM/Elec	10	4.9% 22/453	6.2% of 358	28% of 79	
mpgRNA 16uM/Cas9Prot 16uM/Elec	23	4.9% 46/940	8.5% of 542	31% of 187	
sgRNA/Cas9Protein/Inj	12	0.8% 5/619	1.1% of 454	3.3% of 152	
mpgRNA/Cas9Protein/Inj	12	^{3.7%} 23/628	5.8% of 400	17% of 138	

KOMP2 Phenotyping:

Phase 2 Phenotyping included all Phase 1, plus late adult and intervening pipelines

Tests in development

or under consideration

Non-Mandatory tests

OPT HREM Viability

µCT HREM Viability

µCT Viability

\$2.50

linical Bloo

issue embedding

For LO - might need more than 3+3 for path, suggest 6+6

& block banking

Hematolog

Heart Weight

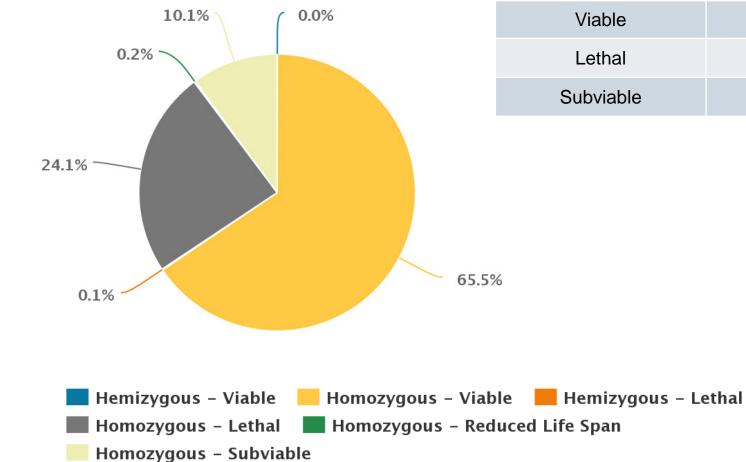
OCT

Eve Morphology

Adult Pipeline Repeated

Gross Pathology and

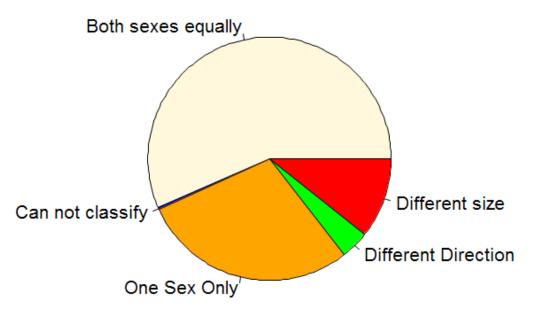
Histopathology


where required

from blocks

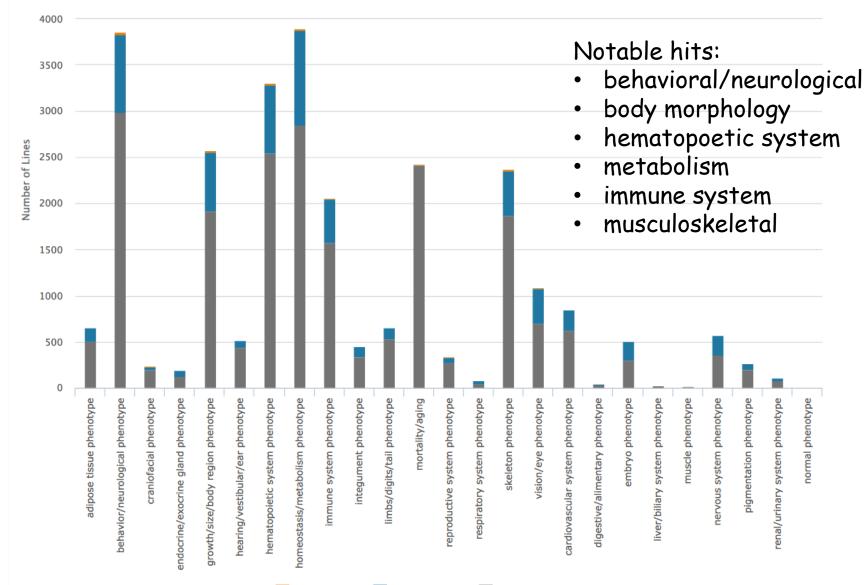
e Collectio

Phase 1 Phenotyping included early adult, embryo, and terminal pipelines

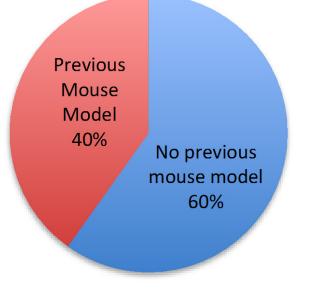

Essential Genes: Revealed

Category	# Genes (% of total)
Viable	1796 (66%)
Lethal	663 (24%)
Subviable	276 (10%)

Sexual Dimorphism: Identified


- Phenotypes resulting from a mutant allele in 2.82% of the total tests (87072)
- Almost half display significant sexual dimorphism

Classification	Number	Percent
Both sexes equally	1392	56.6
One sex only	704	28.6
Different size	263	10.7
Different directions	93	3.8
Cannot classify	6	0.2

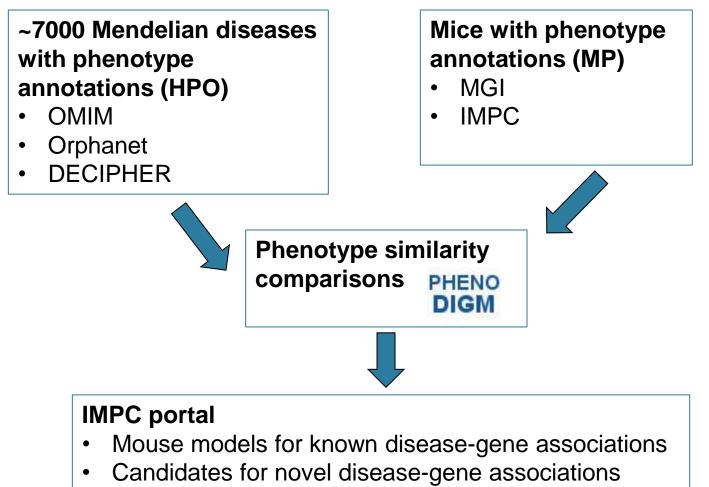

N Karp et al. 2017, Nature Comms

Pleiotropy: Discovered

Prioritizing the unknown

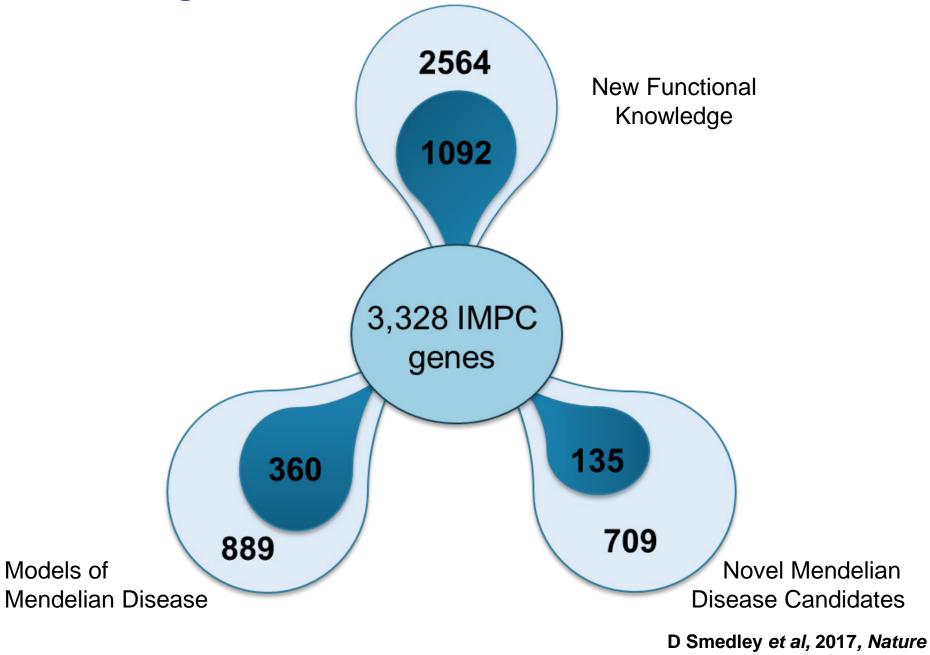
61% of enrolled genes have no available mouse knockout

No biological data available


- Automated electronic
- No biological data available
- Automated electronic
- Curated computational

Curated computational Experimental

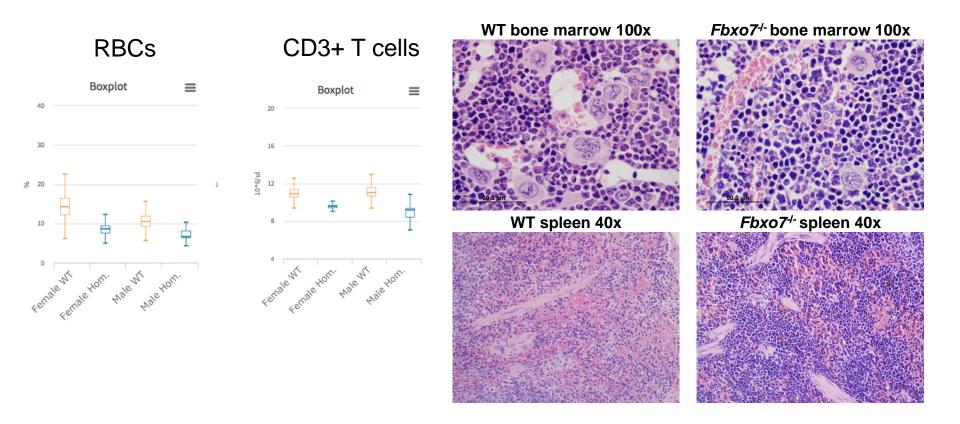
Experimental

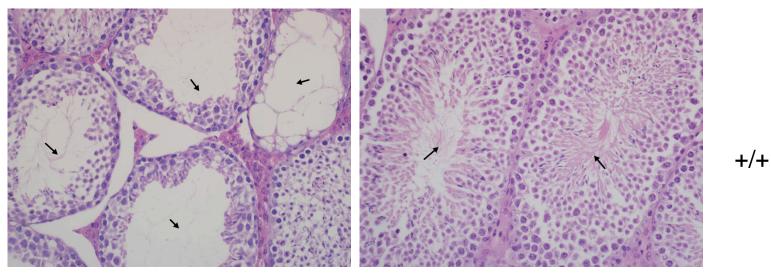

Of those...47% of genes have no confirmed GO functional annotations

Disease association pipeline

• Suggestions for secondary phenotyping projects

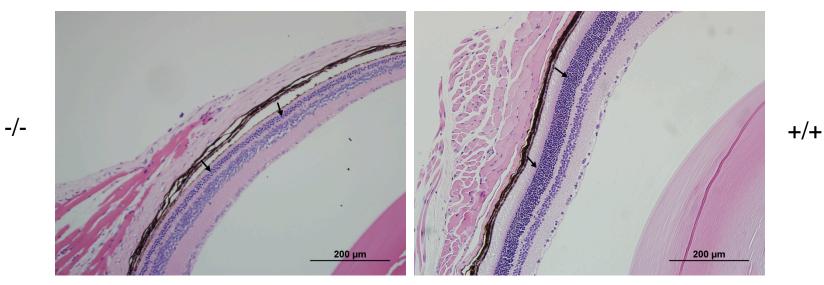
Revealing Disease Candidates and New Models

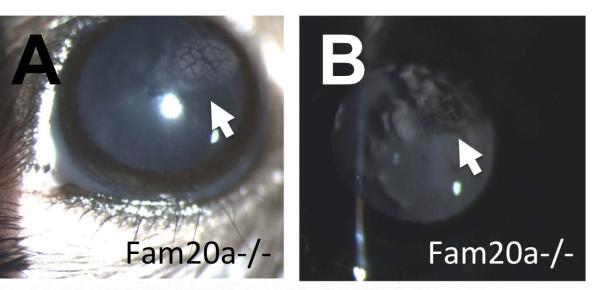

Disease models across diverse biological systems


- 185 of 889 (21%) Mendelian disease-gene associations were modelled
- 134 of 185 (72%) **novel** with no previous mouse model reported in literature (MGI)

Biological system	Disease Gene	Human Mendelian disease	Relevant Human Phenotype	Overlapping Mouse phenotype
Bone	SCARF2	Van Den Ende-Gupta Syndrome	Long metacarpals	Increased length of long bones
Cardiovascular	LMNA	Cardiomyopathy Dilated 1a	Dilated cardiomyopathy	Increased heart weight
Craniofacial	MSX1	Orofacial Cleft 5	Cleft palate	Cleft palate
Embryo	PSPH	Phosphoserine Phosphatase Deficiency	Intrauterine growth retardation	Abnormal embryo size
Growth/Body size	GHRHR	Isolated Growth Hormone Deficiency, Type Ib	Short stature	Decreased body length
Hearing	SLC52A2	Brown-Vialetto-Van Laere Syndrome 2	Sensorineural hearing impairment	Increased or absent threshold for auditory brainstem response
Hematopoietic	GP9	Bernard-Soulier Syndrome	Thrombocytopenia	Thrombocytopenia
Metabolism	KCNJ11	Diabetes Mellitus, Noninsulin- Dependent	Type II diabetes mellitus	Impaired glucose tolerance
Muscle	COL6A2	Bethlem Myopathy	Distal muscle weakness	Decreased grip strength
Neurological	GOSR2	Epilepsy, Progressive Myoclonic, 6	Difficulty walking	Abnormal gait
Reproductive System	RNF216	Gordon Holmes Syndrome	Infertility	Male infertility
Retina	BBS5	Bardet-Biedl Syndrome 5	Rod-cone dystrophy	Abnormal retina morphology

Fbx07: New phenotype

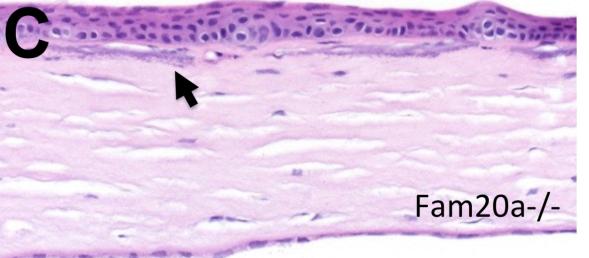

- MGI GO biological process: negative regulation of lymphocyte differentiation
- KOMP phenotype: CBC, clinical blood chemistry, male infertility


-/-

Seminiferous dilation with minimal spermiogenesis; epididymal aspermia

Atrophy of the outer nuclear and outer plexiform layers

Fam20a: Additional phenotype

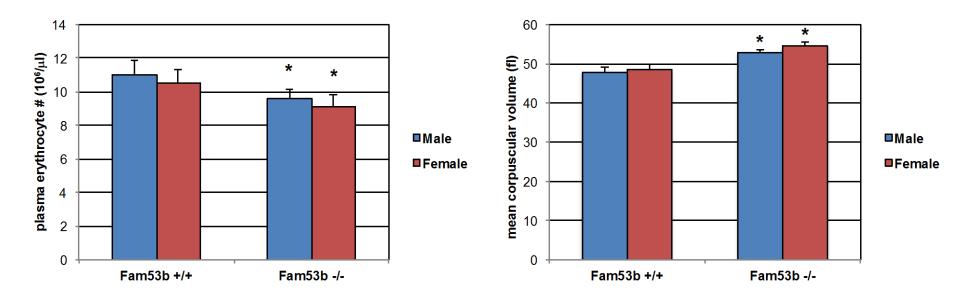

Cornea (NOVEL Gene)

FAM20A (Family with sequence similarity 20, member A) -MGI:2388266 -OMIM:204690 -DOID:0110066 -Enamel-Renal Syndrome: -fail to form proper dental enamel

("amelogenesis imperfecta").

-exhibit nephrocalcinosis and nephrolithiasis.

-previous K/O mice show no ocular phenotype

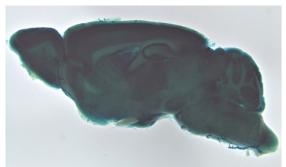

KOMP2 (DTCC): Fam20a-/-

- (A) Corneal abnormalities in the form of crocodile shagreen evident on biomicroscopy
- Retroillumination (B)
- Anterior stromal thinning & (C) calcification of the cornea
- -males and females
- -Abnormal dental morphology

A Moshiri et al, 2017, paper in progress

Fam53b: new functional knowledge

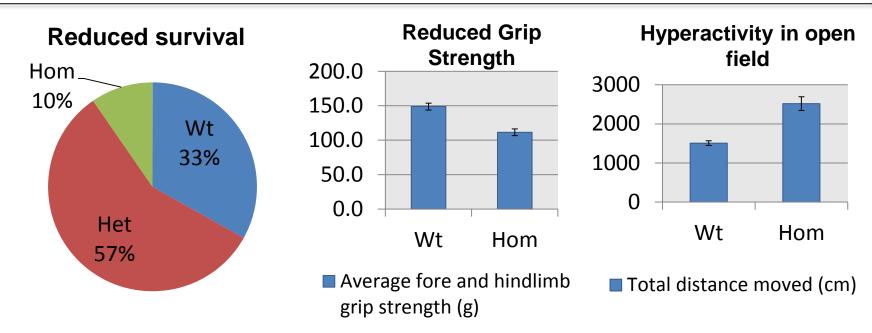
- No reported phenotypes in human or mouse
- Differentially expressed in adult erythrocytes compared to primitive erythrocytes, possible role in Wnt signaling, stem cell maintenance
- Phenotyping suggests role in Diamond-Blackfan Anemia (OMIM:105650) => possible explanation and alternative pathway for the 46% of cases that are not explained by known mutations in 15 ribosome synthesis genes



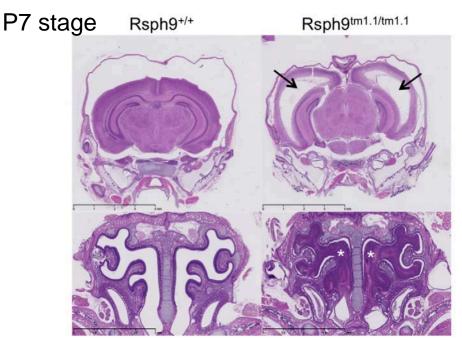
Atp2a2: pleiotropy

- Atp2a2 encodes for a sarcoplasmic/endoplasmic reticulum Ca⁺⁺-ATPase
- Expressed in muscle and brain.
- GWAS between schizophrenia and two SNPs in ATP2A2 (Ripke et al; 2014)
- ATP2a2 associated with Darrier-White disease (OMIM:124200), a dominantly inherited skin disorder that also has a high incidence of psychoses and affective disorders (Jacobsen et al; 1999)

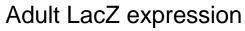
KOMP2:

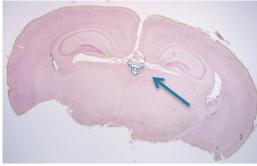

- *Atp2a2*^{tm1b(EUCOM)Hmgu} homozygous lethal at e12.5
- Atp2a2^{tm1b(EUCOM)Hmgu} strongly expressed in heterozygous adult brain
- *Atp2a2*^{tm1b(EUCOM)Hmgu} heterozygous mice present abnormal sensory capabilities/reflexes/nociception and altered prepulse inhibition
- Altered prepulse inhibition is hallmark behavioral phenotype of schizophrenia, which supports association between ATP2A2 linkage findings for schizophrenia / psychoses processes

Frrs11: pleiotropy & sexual dimorphism


-ferric-chelate reductase 1 like (MGI: 2442704)
-encodes outer-core component of AMPA receptor in brain
-protein thought to interact with inner-core components of receptor
-plays role in modulation of glutamate signaling
-mutations associated with Early Infantile Epileptic Encephalopathy (OMIM: 308350)

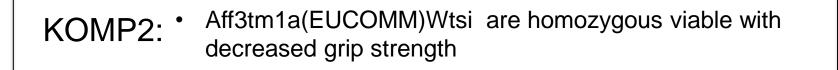
KOMP2: subviable, extensive pleiotropy, sexual dimorphism


Rsph9: model of ciliopathy

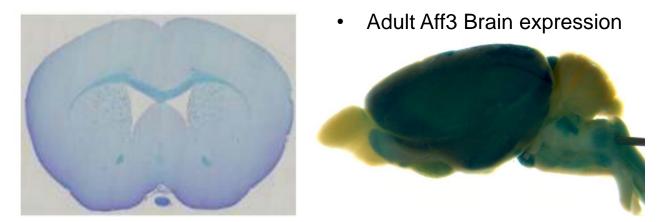

- Radial spoke head protein 9 (component of radial spoke head in motile cilia and flagella)
- Functional role in neural and neurosensory cilia (zebrafish studies)
- RSPH9 mutations identified in patients with Primary Ciliary Dyskinesia
 - IMPC Rsph9 mutants showed partial pre-weaning lethality but viable to P7.
 - KOMP2: Whole brain MRI and H&E staining of coronal sections of the P7 brain reveal severe hydrocephaly of the left and right lateral ventricles.
 - Mice also presented blocked sinuses.

H&E stained coronal sections of P7 mice revealed enlarged ventricles and blocked sinuses in the Rsph9^{tm1.1/tm1.1} mutant mice.

Dickinson et al. 2016, Nature



Rsph9 HET Brain expression (3rd ventricule area


- Rsph9 mouse model recapitulates features of Primary Ciliary Dyskinesia in humans (blocked sinuses and hydrocephaly).
- Expression pattern consistent with phenotype

Aff3: model of pediatric disease

- AFF family of putative transcription factors involved in infant acute leukemia and intellectual disability (ID).
- Aff3 required for normal cellular migration in developing cortex (Moore and al; 2014)
- Gene silencing associated with ID and hypotonia at the folate-sensitive fragile site (FSFS) FRA2A (Metsu et al; 2014)

 Brain histopathology: enlarged ventricules, decreased size of corpus callosum

• Corpus callosum abnormalities: common brain malformations, wide clinical spectrum (severe intellectual disability to normal cognitive function)

Aff3 mouse mutant presents features common in FRA2A patients

Cnnm2: Lethal mid-gestation

• Extant knowledge:

 Human ortholog: cyclin and CBS domain divalent metal cation transport mediator 2; hypomagnesemia, seizures, mental retardation

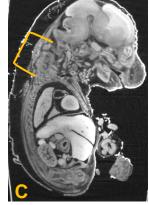
• KOMP:

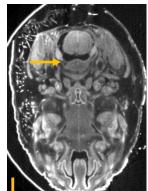
WT

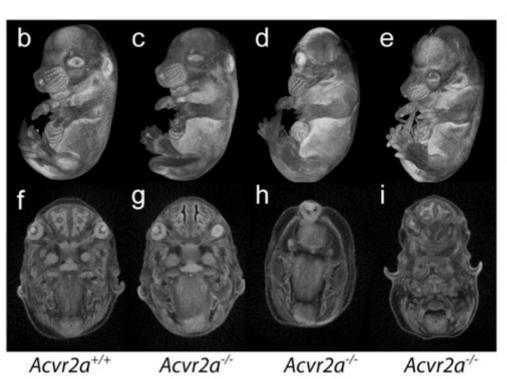
HOM

- -HOM Lethal at e15.5
- LacZ e12.5: no stain
- –uCT e15.5: Exencephaly, Heart defects (DORV, VSD, pulmonary trunk, etc), Vertebrae: Cervical C1-C7, hydrops

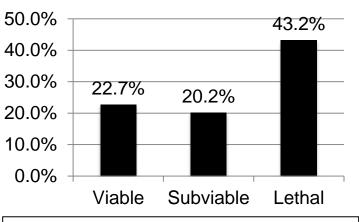
WT




HOM-A


НОМ-В

Paralogs: Subviability and incomplete penetrance

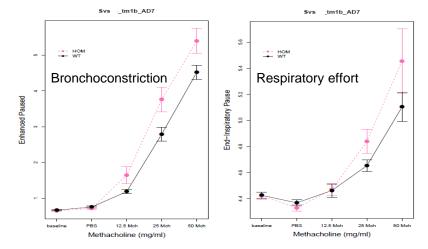


Cgn+/+

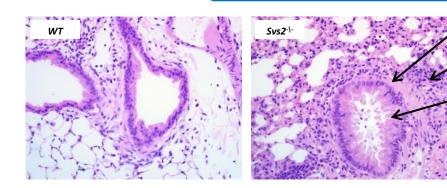
Cgn^{-/-} Cgn^{-/-}

Cgn^{-/-}

% without paralog


Subviable genes are much less likely to lack a paralog than lethal genes

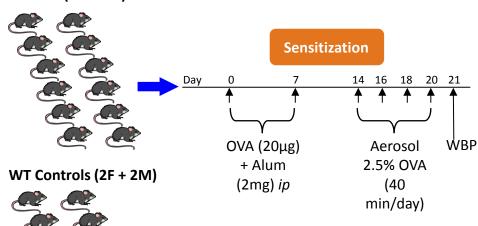
Challenge Phenotyping: Immune response


Svs2 - Seminal vesicle secretory protein 2

GO functional annotation: fertilization, sperm capacitation

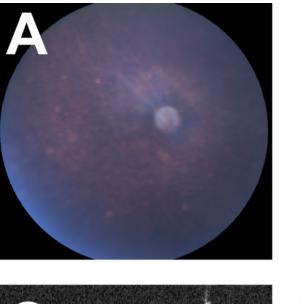
Respiratory Function, Lung Development, and Airway Hyper-reactivity (bronchoconstriction)

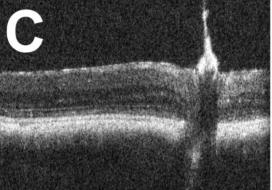
Histopathology (allergic airway disease)

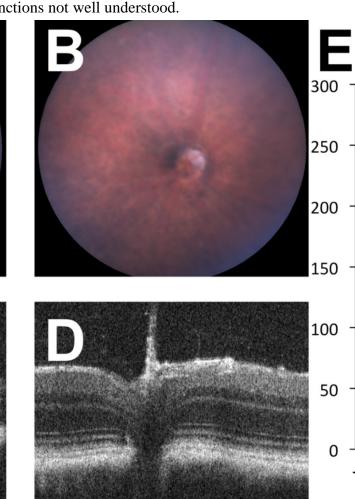


Airway wall thickening Peribronchiolar inflammation Goblet cell hyperplasia

Mucus secretion

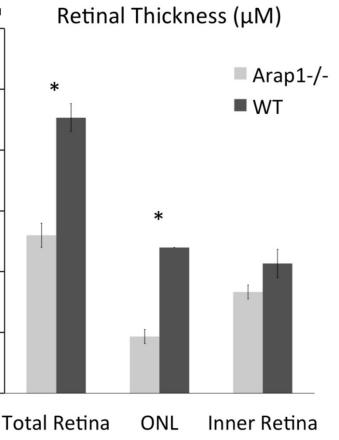

BAL (Cytokines) Serum Ig (OVA-specific IgE & OVA-specific IgG₁)

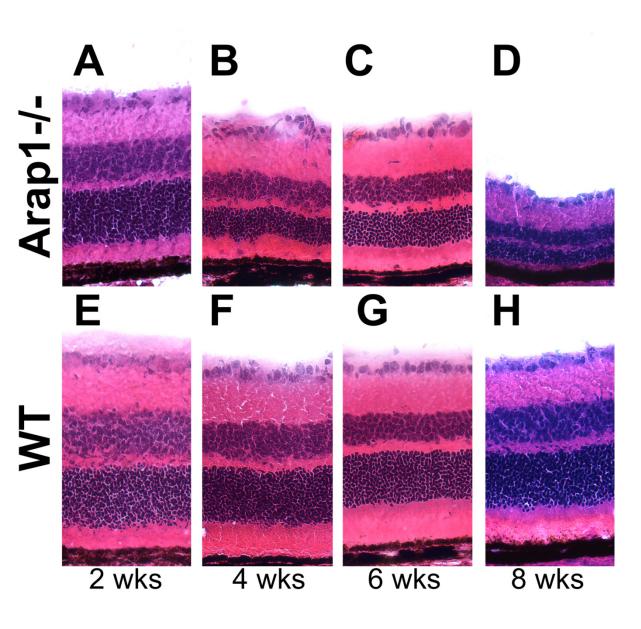

Mutants (6F + 6M)



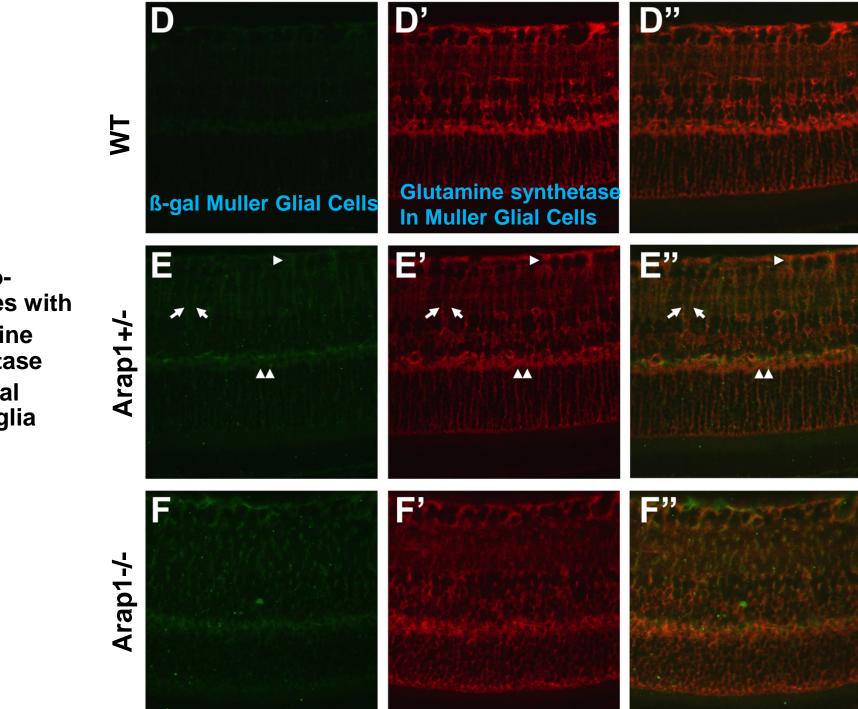
Arap1: New disease mechanism

Retina (VERIFIED Gene) ARAP1 (ArfGAP with RhoGAP domain, ankyrin repeat and PH domain 1) -MGI:1916960 -OMIM:606646 -regulates lysosome maturation, cell signaling -extent of functions not well understood.




KOMP2 (DTCC): Arap1-/-

- (A) Mutant fundus (16 wks, male)
- (B) Wildtype fundus (16 wks, male)
- (C) Mutant OCT (16 wks, male)
- (D) Wildtype OCT (16 wks, male)
- (E) Retinal thickness


-male and female

A Moshiri et al, 2017, IVOS

*Arap1-/*progressive photoreceptor degeneration *in mice*, similar to retinitis pigmentosa in humans.

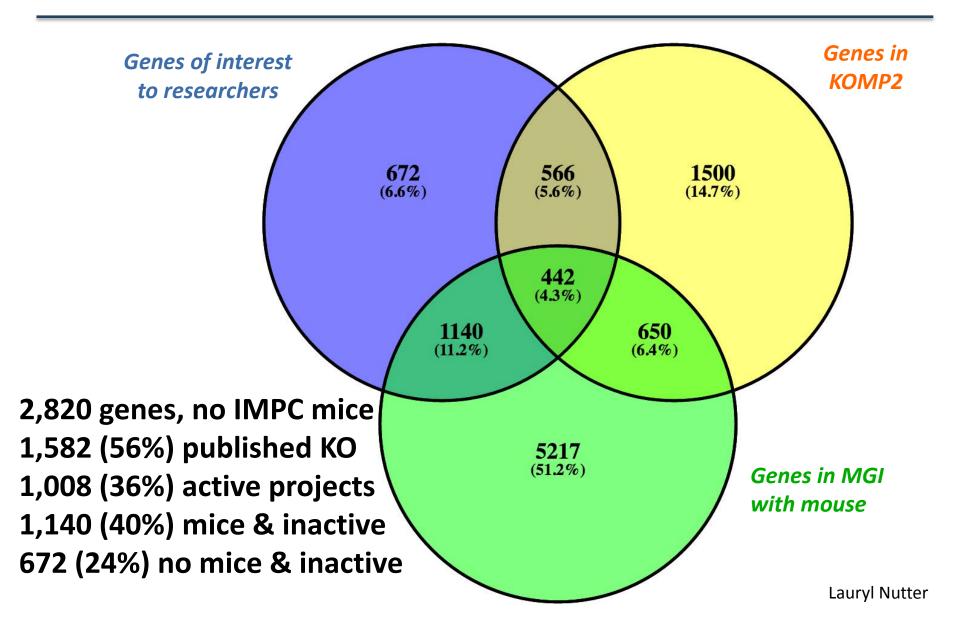
ßgal colocalizes with glutamine synthetase in retinal Müller glia

Phenotype Survey: Deafness

M Bowl et al, 2017 Nature Comms

Enhancing availability and accessibility: Integration of KOMP2 with MMRRC

The MMRRC is a consortium of four regionally distributed archive and distribution Centers and an Informatics, Coordination and Service Center (ICSC) functioning as a fully integrated repository system.


The Centers import, quality control, maintain, archive, and distribute mouse lines upon request.

The ICSC provides an online searchable catalogue, dynamic website, strain curation services, data resources, technical assistance, and outreach and education activities.

Responding to the Community

Community Engagement

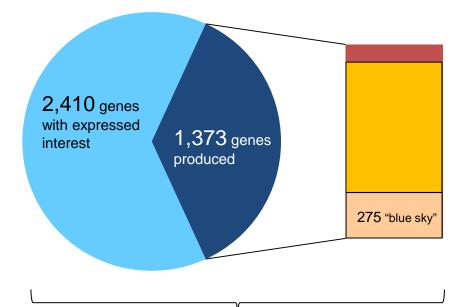
Explore Data Services About

Nominate your gene

When you nominate a gene:

- The information will be kept strictly confidential
- We will use the information to
 - prioritize genes for mouse production
 - inform our phenotyping efforts
 - assist us in characterizing phenotypes

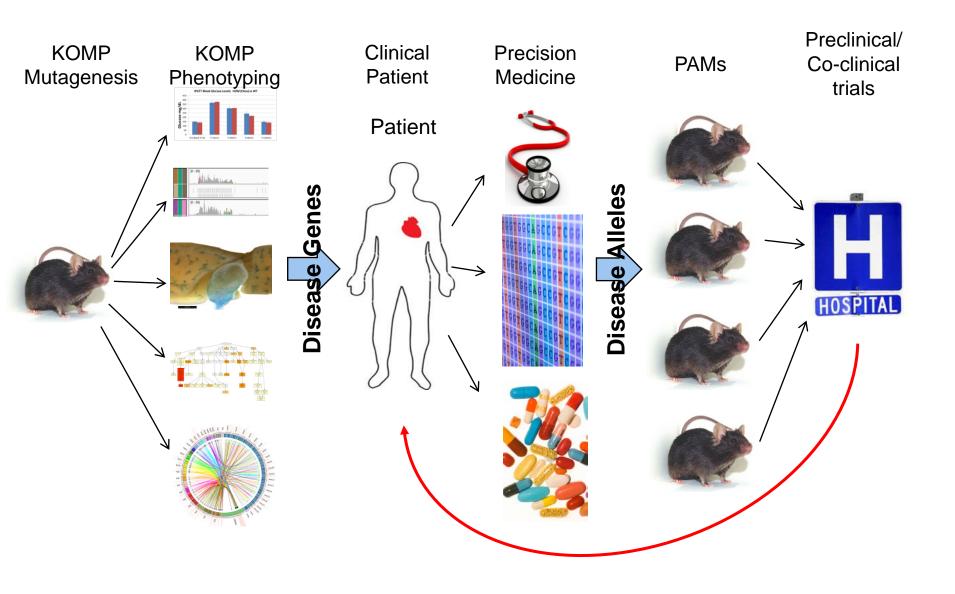
Before nominating your gene, please take a second and update your NIH Funding Sources by <u>clicking here</u>, if you are not funded by a NIH source proceed to nominate your gene.


Search

Laboratory PI	
Institution/Organization	
Gene Selection Search Gene	Search for the gene you want to nominate, and then select it from the drop down menu below.
Justification	• Sample justifications
	 > Implicated by genetic studies for a role in a disease > Known function in a physiology/cellular function/disease process > Target for drug discovery > Mutant would be important model for studying
	a process or disease

The KOMP Phenotyping Project is funded by an ARRA grant to UC Davis and CHORI.

Questions? Comments? Please contact us: 1-888-KOMP-MICE or service@komp.org


UCDAVIS MOUSE BIOLOGY PROGRAM

~90% of eligible genes produced were enrolled by request

Non-enrolled genes referred to MBP for contracted production

How KOMP2 informs precision mouse models

KOMP2: To what end?

- Novel insights into gene function
- Extensive new collection of disease models and new candidate disease genes
- Pervasive sexual dimorphism and pleiotropy
- Identification of new gene and phenotype relationships to elicit novel biological mechanisms
- Insights into human disease from the analysis of mouse lethal (essential) genes
- Establish fundamental genomic knowledge necessary to practice precision medicine*

*But current revised plan will leave out ~half of genome

KOMP2 Principles and Practices

- Formulate hypothesis-generating projects
- Enable availability and accessibility of mouse lines and data to academic and commercial communities worldwide
- Encourage use of extant, rather than recreating, lines
- Maximizing awareness of lines and data
- Extend technical support services to researchers
- Engage research community in project
- Practice scientific rigor and reproducibility
- Ensure protection, preservation, and perpetuity of resource

www.impc.org

Acknowledgements

IRC

HelmholtzZentrum münchen

EMBL-EBI

C . H . O . B . I

