

The NIH Undiagnosed Diseases Network

NIH Council of Councils May 20, 2016

William A. Gahl, MD, PhD Clinical Director, NHGRI Director, NIH Undiagnosed Diseases Program

Testing the feasibility of a national network that extends and expands upon the success of the intramural NIH Undiagnosed Diseases Program to:

- Improve the level of diagnosis and care for patients with undiagnosed diseases by developing protocols designed by a large community of investigators
- **Facilitate research** into the etiology of undiagnosed diseases by collecting and sharing standardized, high-quality clinical and lab data including genotyping, phenotyping, and environmental exposure histories
- Create an integrated and collaborative research community across multiple clinical sites and among lab and clinical investigators to investigate the pathophysiology of new and rare diseases

The UDN

- 1. The NIH Undiagnosed Diseases Program (UDP)
 - Background
 - Discoveries
 - Mysteries/Treatment
 - Diagnoses
- 2. Expansion to a Network
- 3. The Future

- Goals:
 - To assist patients with unknown disorders reach an accurate diagnosis
 - To discover new diseases that provide insight into human physiology and genetics

Intramural UDP Operations

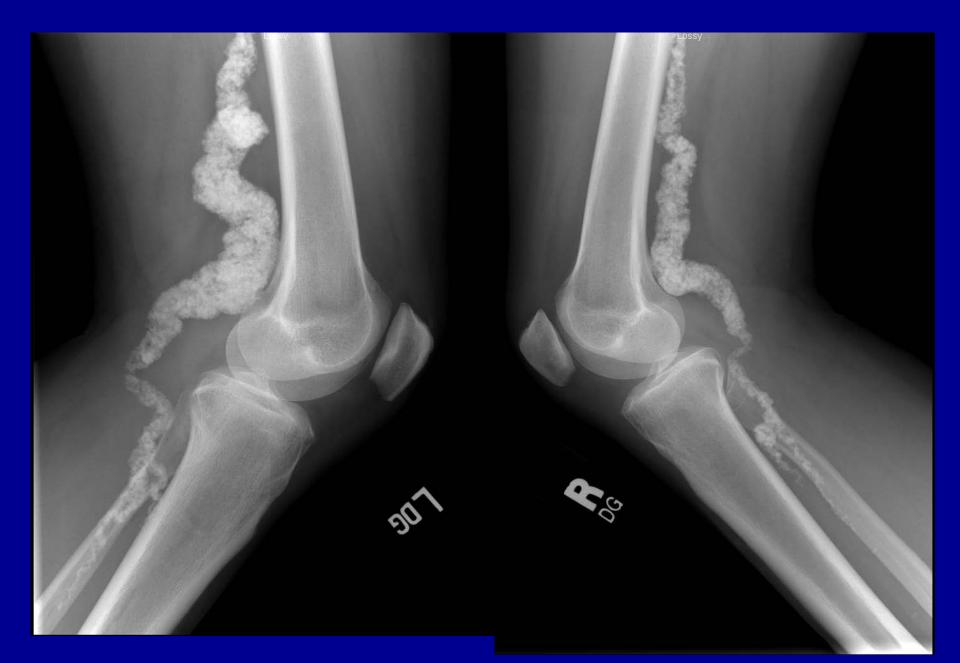
- Applicants submit medical records
- Referring physician sends summary letter
- UDP Director triages submitted records
- Intramural NIH consultants review records
 - Many different specialties involved
 - Research oriented; not financially driven
- UDP Director makes final disposition
- Patients/physicians receive a standard letter; advice conferred in ~25% of cases
- If accepted, 1-week inpatient CC admission

UDP Numbers

- Medical Records: ~3500
- Admitted & Evaluated: ~1000
- Children:
- Neurological:
- Some diagnosis:
- Publications

~40% ~50% ~25% ~70

UDP Investigations


- 1. Patient phenotyping to rule out known diseases and describe new ones.
- 2. Genetic studies
 - a. Commercial testing
 - **b.** SNP arrays
 - c. Exome sequencing
- 3. Functional studies (assays, model systems)

5 Adult Siblings with these Clinical Symptoms and Signs:

- Intermittent claudication of calves, thighs, buttocks
- Chronic ischemic pain of the feet
- Joint pain in the hands
- Arterial calcification of lower extremities
- Spared coronary arteries

Femoral-Popliteal Artery Calcification

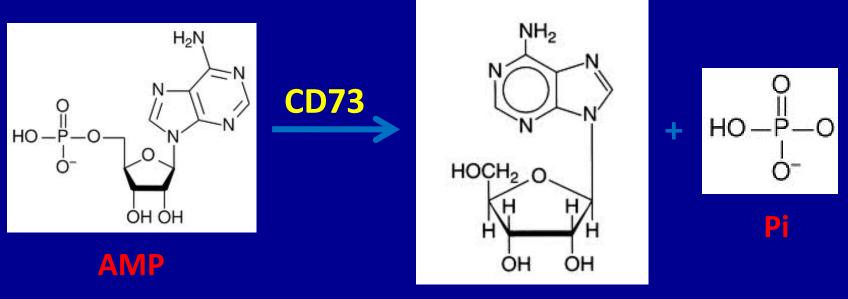
Parents were 3rd Cousins SNP Array: Chromosome 6q14.3-6q21

Parents

Affected

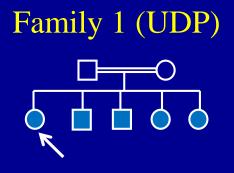
		GT Samples UDP.1883 [139] (1pxl=61K	8)	
新生产	f gamilinging a first scatter and states		en altrians a chistophi stillat i	
	to attract and the second	GT Samples UDP.1884 [140] (1pxl=81K	8	
*	ertike and in the side of the second to	maniles elle se finite (se finite elle elle elle elle elle elle elle e	en i den sis anoma si de Para	nder indere i som der einer
		GT Samples UDP.797 [133] (1pxl=61K)	0	
1	i nilandir nasi situsu baratan kara	was statemaka an arme a 19-20 m.		1. I.
		GT Samples UDP.1889 [143] (1pxl=81K	8	
1 A 1				
		GT Samples UDP.1103 [135] (1pxl=81K	8	
	t animtem i Bildsitmentetti	weise weisen weisen weisen weisen eines eines		
1.1.1.1	and the second	GT Samples UDP.1112 [136] (1pxl=61K	e,	and the second second
		and a second		
· ·	and the second second second	GT Samples UDP.1433 [138] (1pxl=61K	8) 	· · ·
			8	
	p24.3 p23 p22.3 p22.1 p21.2 p21.1 p12.3	p12.1 q12 q13 q14.1 q15 q16	0.1 q16.3 q21 q22.1 q22.31 q23.2 q23	3. q24.1 q24.3 q25.1 q25.2 q25.3 q26 q27
	43,335,005 52,583,745 61,8	32,485 71,081,225 80,329,965	89,578,705 98,827,445 108,076	3, <mark>8</mark> 5 117,324,925 126,57
p21.31	p21.2 p21.1 p12.3 p1 p12.1 p11 c	11.1 q12 q13 q14.1 q1 q	14 3 q15 q16.1 q16 q16.3	21 q22.1 q2 q22.31

Region of Identical Homozygosity

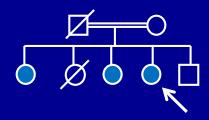

Dr. Tom Markello

Linkage Region

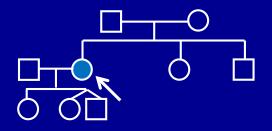
- Region of homozygosity: 22.4MB
- 7977 total SNPs without a single A/B genotype in any locus
- 92 genes, about 902 exons
- No structural genes of the extracellular matrix
- One good candidate gene: *NT5E*, encoding CD73, an ecto-5'-nucleotidase


T. Markello, C. St. Hilaire

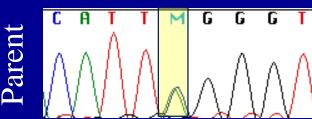
NT5E Encodes CD73

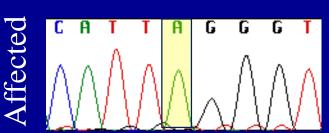


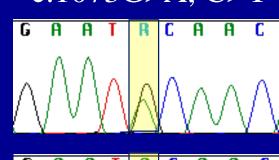
Adenosine

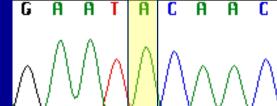

NT5E Sequencing Analysis

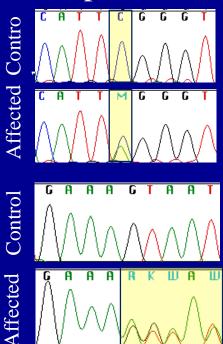
Family 2 (Kleta)

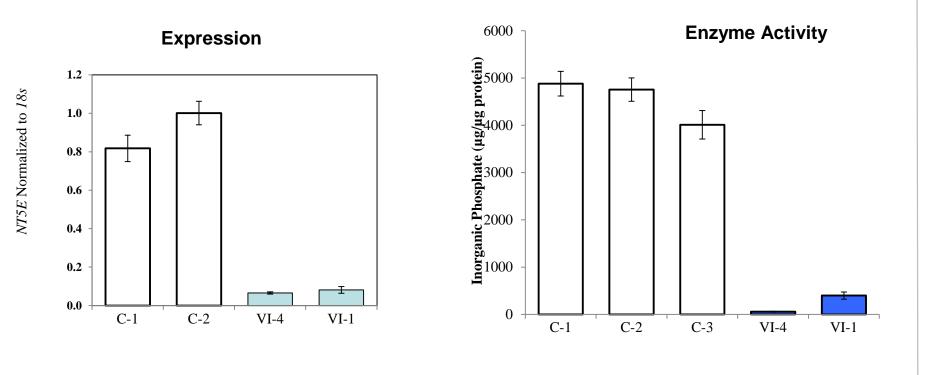


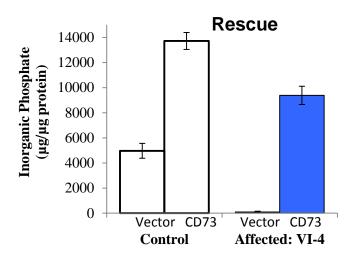

Family 3 (Nussbaum)



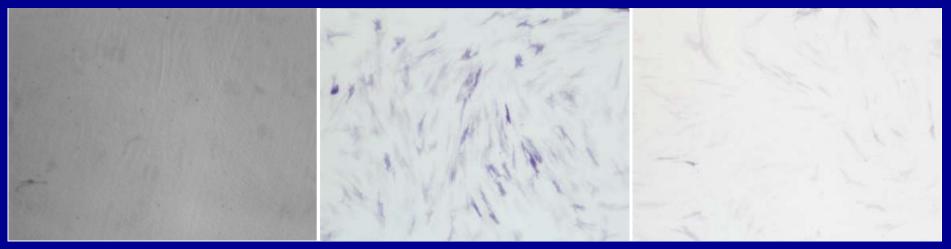



c.1073G>A, C>Y c.1069dupA/c.662C>A





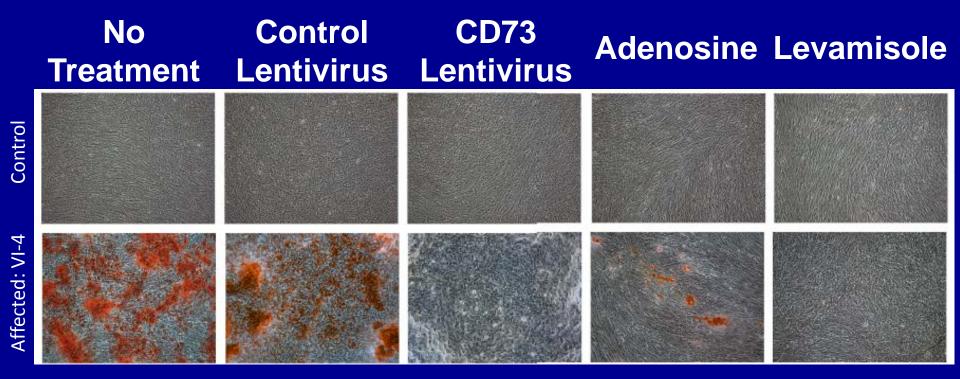
S. Ziegler

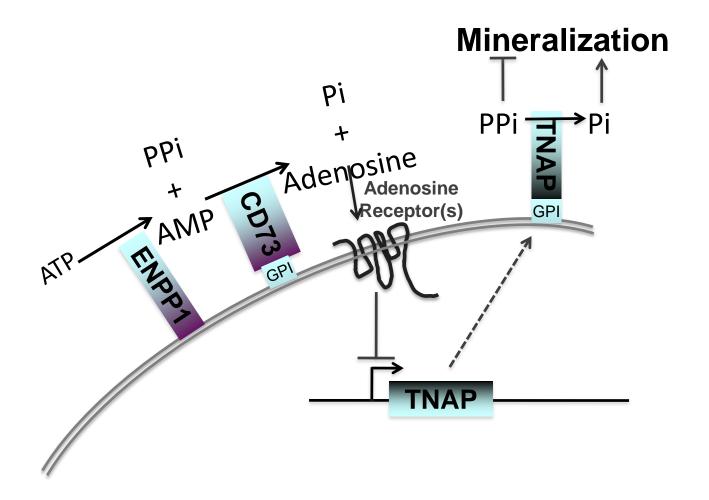

Drs. C. St. Hilaire, M. Boehm

Increased Fibroblast Staining for Alkaline Phosphatase

Control

Affected

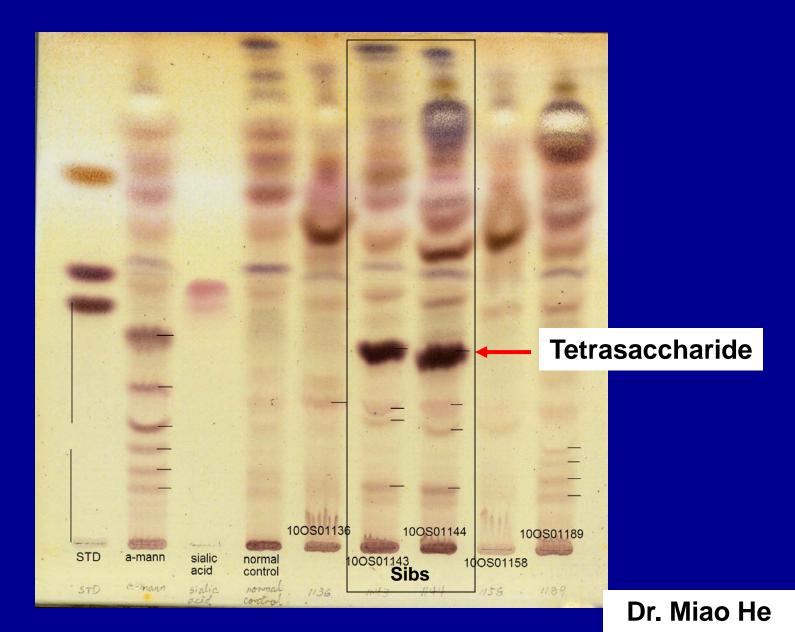

Affected + Adenosine

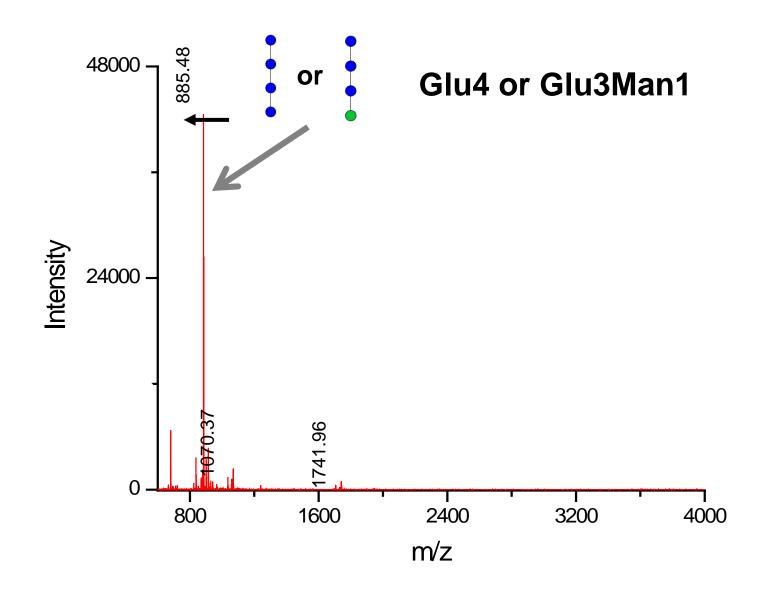

Adenosine treatment of cells reduces alkaline phosphatase staining.

St. Hilaire C, Ziegler SG, et al. NEJM 2011.

Rescue of Cell Calcification by a CD73 Lentivirus, Adenosine, or an Alkaline Phosphatase Inhibitor (Levamisole)

St. Hilaire C, Ziegler SG, et al. NEJM 2011.


10 year-old boy and 5 year-old girl

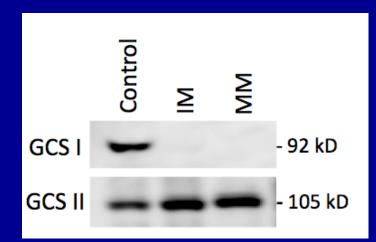


- Facial dysmorphisms, hypotonia, delays, hearing loss, nystagmus, seizures
- MRI: Diffuse atrophy, especially periventricular
- Labs normal, including transferrin IEF
- Urine glycan screening by MALDI (Dr. Miao He, Emory) confirmed hex4 band seen on TLC.

Oligosaccharide TLC

Urine glycan MALDI profile

Dr. Miao He

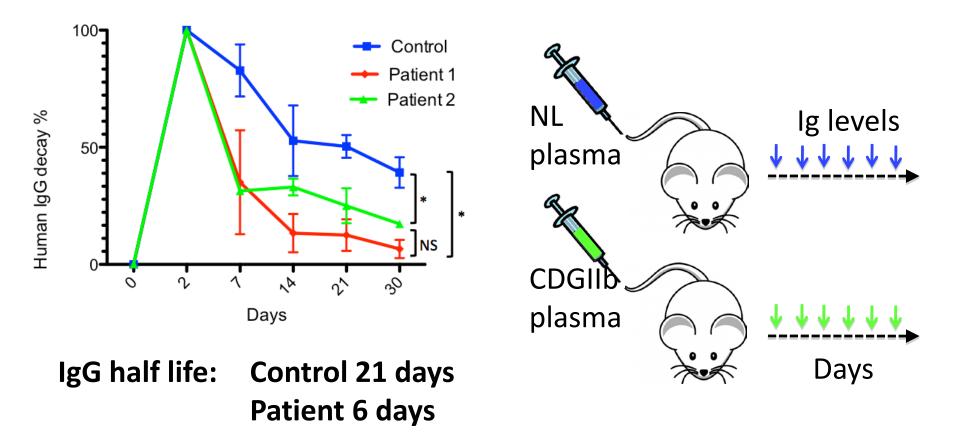

Deficiency of Glucosidase I?

- In N-linked glycoprotein synthesis, Glc₃Man₉GlcNac₂ is transferred to polypeptides in the ER.
- Glucosidase I is the first trimming enzyme, removing the terminal glucose.
- Further trimming allows for creation of complex oligosaccharide on N-linked glycoproteins
- Glucosidase I deficiency is Congenital Disorder of Glycosylation IIb (1 patient).

Mutation Analysis of Glucosidase I Gene

Both affected children are compound heterozygous for:

Exon 1: c.65C>A, p.A22E; c.329G>A, p.R110H
Exon 2: c.370C>T, p.124Q>X

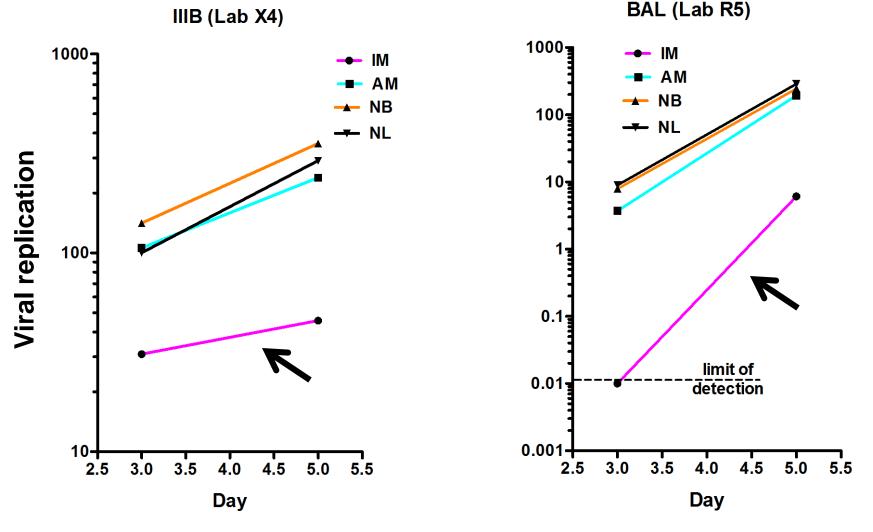

They are the 2nd and 3rd patients in the world with CDG IIb.

CDGIIb Patients

 Hypogammaglobulinemia IgG 142 (504-1465 mg/dL) IgA 18 (27-195 mg/dL) IgM 25 (24-210 mg/dL)
Why?

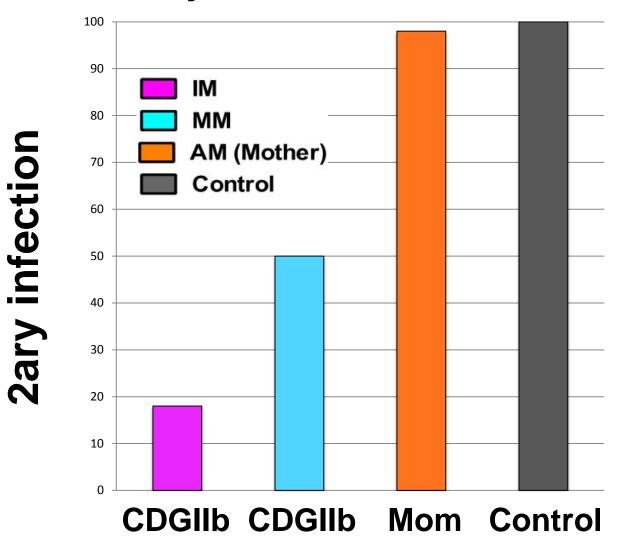
 IgG, lacking oligosaccharides in patient, is rapidly degraded.

Hypo/agammaglobulinemia Evaluation: IgG Half-life in RAG1 SCID Mice



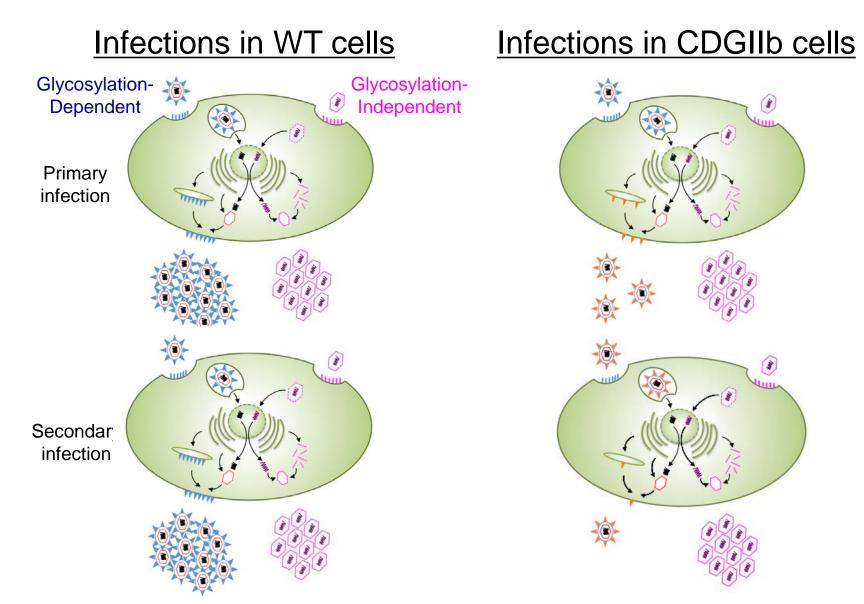
Dr. Sergio Rosenzweig

Despite hypogammaglobulinemia, CDGIIb patients do not get infections!


WHY?

CDGIIb cells could be infected with virus, but once infected, they produced much less virus.

Dr. Sergio Rosenzweig


And the virus produced is 50-80% less infective, as gauged by the ability to produce a secondary infection.

Dr. S. Rosenzweig

Dr. Sergio Rosenzweig

Viral susceptibility model

Mysteries/Treatment

UDP 10237-25 year old man with contractures and skin ulcerations

Upper Extremities

Lower Extremities

Left lower extremity

Marcus Chen, MD

Marcus Chen, MD

UDP 10237

- No diagnosis, but because the calcifications could be stimulating an inflammatory reaction, Dr. Lisa Rider (Rheum) suggested topical sodium thiosulfate.
- The thiosulfate salt of calcium is 250-10,000 times more soluble than the phosphate salt.

Sodium Thiosulfate – July 2014 (1 month)

Sodium Thiosulfate – August 2014 (2 months)

Sodium Thiosulfate – October 2014 (4 months)

Very Very Rare Diagnoses

 Myoclonus epilepsy without renal failure – due to SCARB2 mutations (5 in world)
Ichthyosis Follicularis with Atrichia and Photophobia (IFAP) with MBTPS2 mutations (6 families in world)

- Neurodegeneration with brain iron due to c19orf12 mutations (20 families)

- ALS-Frontotemporal Dementia due to c9orf72 expansion
- Cytosolic PEPCK deficiency due to PCK1 muts
- KDCT7 in two sibs with ataxia, Sz (2 families)
- Nephrolithiasis & 24-hydroxylase deficiency (few families)

Very Very Rare Diagnoses

 Congenital Disorder of Glycosylation type 2b (2nd and 3rd cases in world)

- Adducted Thumb-Clubfoot Syndrome & CHST14 mutations (1st case in U.S.)
- Spinocerebellar ataxia, myoclonic epilepsy & AFG3L2 muts (1st AR case)
- Autosomal Dominant Leukodystrophy & LMNB1 duplication (~10 in world)
- Adenylosuccinate lyase def. (~60 cases)
- Hereditary Muscular Neuropathy type 6 due to IGHMBP2 muts (oldest pt. known)
- Fatty acid 2-hydroxylase def. (~50 cases)

Recent Diagnoses

- Spermine synthetase mutations with developmental delays (Snyder-Robinson)
- XP with dementia due to ERCC1 mutation
- Delays and seizures due to PIGT mutations and GPI anchor deficiency
- Stargardt syndrome, Pelger-Huet anomaly, and
 - others with chromosome 1 isodisomy
- Movement disorder due to PLA2G6 mutations
- Osteopetrosis due to LRP5 mutation
- Mowat-Wilson syndrome due to ZEB2 mut
- Fahr's disease due to PDGFRB mutations
- Spasticity & leucodystrophy due to DARS mut
- Leucodystrophy due to AARS2 mut

Recent Diagnoses

- Kohlschutter-Tonz syndrome (Sz, neurological regression) due to *ROGDI* mutations
- Delays, hypotonia, strabismus due to biallelic UNC80 mutations
- CVID, aplastic anemia due to a CTLA4 mut
- Myofibrillar myopathy with de novo BAG3 mut
- X-linked intellectual disability, facial dysmorphisms due to *RLIM* mutation
- Desminopathy
- Fatal Creutzfeldt-Jacob; PrPSc/PrP27-30
- Oculodentodigital Dysplasia due to GJA1 (connexin 43) mutations

- Chorea, hypomyelination-de novo TUBB4A mut

Some UDP Communications

- Announcement May 19, 2008 (Dr. Zerhouni)
 - 90 patient advocacy groups; 25 reporting agencies
- Written press coverage
 - Newsweek article
 - Scores of newspaper articles
 - NY Times Magazine, People Magazine (!)
 - Nature article

Television and Radio

- NBC Nightly News
- Fox Television (Chris Wallace); PBS
- CNN (Dr. Sanjay Gupta)
- ABC Today Show
- 60 Minutes
- Discovery

Political Inquiries

Congress NIH Director Secretary HHS White House

Congressional Visits to NIH UDP ~6

Expansion to a UDN

- UDP, 7 Clinical Sites, Coordinating Center, 2 Sequencing Cores, Metabolomics Core, Model Organisms Screening Center, Central Repository
- Central NHGRI IRB; Reliance Agreements
- Formal data sharing agreements
- Consent: PII to be shared within UDN, de-identified data with others.
- First patients: August 2015.

Mapping UDP to UDN

- 1. Phenotyping -> 7 Clinical Sites
- 2. Genetics -> 2 Sequencing Cores

1. Functional studies -> Model Organism Screening Core; Gene Function initiatives

Seven clinical sites, a coordinating center, two DNA sequencing cores, a metabolomics core, a model organisms screening center, and a central biorepository

NIH The UDN Gateway

Click "Apply" button on any UDN website for more information

http://undiagnosed.hms.harvard.edu/apply/

Challenges of expanding Intramural UDP -> Extramural centers (UDN)

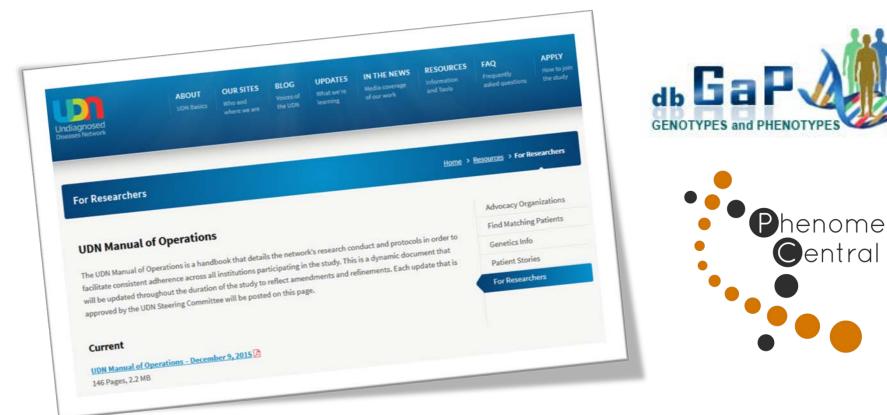
1. Financial issues

- Billing for clinical vs research
- Payment for patient travel
- Ability to examine/study family members

2. Practical issues

- Inpatient vs outpatient; sequence before visit?
- Availability of diverse specialists
- Time for consultants to discuss case together

3. Research issues

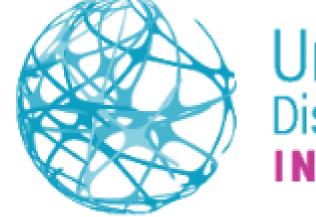

- Need to expand the capacity to investigate the pathophysiology of new diseases
- Federal/medical center data sharing

Progress – Toward Diagnosis Applications 611 Accepted 220 Evaluated **40** Diagnosed 11 Exomes sent 189 135 Genomes Model Organism Genes **52** Metabolomics Starting Collaborations: UCLA & Baylor; Duke As of May 1, 2016; UDN opened August 2015

Progress - Toward Sharing

- Coordinating Center collecting data; available to Network, collaborators
- Submission to public databases
- UDN accepting applications for Collaborative Clinical Sites abroad
- Model Organisms Screening Core and Metabolomics Cores are discussing cases with clinicians
- International Undiagnosed Diseases Network

NIH UDN Data Sharing and Outreach



Manual of Operations Available! http://undiagnosed.hms.harvard.edu/

Undiagnosed Diseases Network International(UDNI): White Paper for Global Actions to Meet Patient Needs Domenica Taruscio^a, Stephen C. Groft^b, Helene Cederroth^c, Béla Melegh^d, Paul Lasko^e, Kenjiro Kosaki^f, Gareth Baynam^g, Alexa McCray^h, William A. Gahlⁱ

Molecular Genetics and Metabolism 116:223-5, 2015.

Undiagnosed Diseases Network

Website:

http://www.udninternational.org/

UDNI Meetings - Sharing

1. Meetings

- Rome September 2014
- Budapest June 2015
- Vienna February 2016
- Tokyo November 2016
- Common Fund + Wilhelm

Foundation

2. UDPs Operating

- Western Australia
- Japan
- Vienna
- Italy

New United States UDPs

- UDN has stimulated other groups to start UDPs.
- Sequencing but no research testing.
- Other sites look to UDN for collaborations, sharing, MOO.
- Sites include:
 - U. Alabama-Birmingham
 - Emory
 - Mayo
 - U. Utah

Issues for the UDN

- 1. Billing
- 2. Sequence before or after seeing patient
- 3. How to disseminate information
- 4. Sustainability of UDN model
- 5. Central support vs. Local support

Sustainability/Dissemination of the UDN

- FY18-22: Request Common Fund support; plan for future support.
- FY23-> : No Common Fund support.
 - Extramural portion of UDN
 - NCATS? CTSAs? Central NIH Database?
 - Independent medical center support? Philanthropy?
 - Intramural
 - Supported by Clinical Center, consortium of ICs?
 - Reduced volume of new patients
 - Follow-up for previous patients
 - Disseminate new disease patients to ICs
 - Maintain UDPICs database

