Accelerating Therapeutic Somatic Cell Gene Editing Approaches

Mary Ellen Perry, Ph.D. Office of Strategic Coordination Division of Program Coordination, Planning, and Strategic Initiatives Council of Councils Concept Clearance September 1, 2017

Challenge/Opportunity

Thousands of incurable genetic diseases are now theoretically treatable by gene editing approaches.

Simple and versatile genome editing methods are democratizing therapeutic development.

For some indications, a single treatment could be a cure.

Therapeutic development is still inefficient.

Development costs for ultra-rare diseases are prohibitive for industry.

What is Gene Editing?

Gene editing is a rapidly developing area of biotechnology in which the nucleotide sequence of the genome of living cells is specifically targeted.

www.slideshare.net/ChrisThorne1/an-introduction-to-crispr-genome-editing-52663021

Nuclease-based Gene Editing Therapies are in Clinical Trials

Status	Study Title	Conditions	Interventions
Recruiting	Ascending Dose Study of Genome Editing by the Zinc Finger Nuclease (ZFN) Therapeutic SB-913 in Subjects With MPS II	Mucopolysaccharidosis II	Biological: SB-913
Recruiting	Ascending Dose Study of Genome Editing by the Zinc Finger Nuclease (ZFN) Therapeutic SB-318 in Subjects With MPS I	MPS I	Biological: SB-318
Recruiting	Ascending Dose Study of Genome Editing by Zinc Finger Nuclease Therapeutic SB-FIX in Subjects With Severe Hemophilia B	Hemophilia B	Biological: SB-FIX
Recruiting	Dose-Ranging Study of Recombinant AAV2/6 Human Factor 8 Gene Therapy SB-525 in Subjects With Severe Hemophilia A	Hemophilia A	Biological: SB-525
Completed	Phase 1 Dose Escalation Study of Autologous T-cells Genetically Modified at the CCR5 Gene by Zinc Finger Nucleases in HIV-Infected Patients	HIV Infection; HIV Infections	Genetic: SB-728-T

Making the cut

CRISPR genome-editing technology shows its power

By John Travis

National Institutes of Health Office of Strategic Coordination - The Common Fund

www.sciencemag.org/news/2015/12/and-science-s-2015-breakthrough-year

CRISPR-based Gene Editing Systems are Simpler and More Efficient than Previously Used Nuclease Systems

ZFN, TALENs

Targeting is directed to specific sequence by DNA binding-domains fused to the nuclease

Each new genetic target requires a newly engineered protein

CRISPR-Cas9

Targeting is directed to specific sequences by a guide RNA

Each new genetic target requires a new guide RNA; the same nuclease can target any gene

www.addgene.org/genome-engineering/

CRISPR-Cas9 is Versatile – It Can Be Modified to Make Single Base Edits without Cleaving DNA

National Institutes of Health Office of Strategic Coordination - The Common Fund

A C Komor et al. (2016) Nature 533: 420-424. doi:10.1038/nature17946

Boom in human gene editing as 20 CRISPR trials gear up

A pioneering CRISPR trial in China will be the first to try editing the genomes of cells inside the body, in an effort to eliminate cancer-causing HPV virus

CRISPR keeps cancer in check

National Institutes of Health Office of Strategic Coordination - The Common Fund

M Le Page (2017) New Scientist 3128

Limitations

Targeting specificity & efficiency Off-target effects & unintended consequences

D B Turitz Cox et al. (2015) Nature Medicine 21: 121-131. doi:10.1038/nm.3793

Common Fund Planning Workshop July 24, 2017

Workshop Participants

Charles Albright, Ph.D., Editas Medicine	Samantha Maragh, Ph.D., NIST	
Thomas Barnes, Ph.D., Intellia Therapeutics	Peter Marks, M.D., Ph.D., FDA	
Ronald Bartek, M.A., Friedreich's Ataxia Research Alliance	Pilar Ossorio, Ph.D., J.D., University of Wisconsin	
Jennifer Doudna, Ph.D., University of California Berkeley	Matthew Porteus, M.D., Ph.D., Stanford University	
Cynthia Dunbar, M.D., NHLBI	Bill Skarnes, Ph.D., Jackson Laboratory	
Lisa Ellerby, Ph.D., Buck Institute for Aging Research	Edward Stadtmauer, M.D., University of Pennsylvania	
Charles Gersbach, Ph.D., Duke University	Sohel Talib, Ph.D., CIRM	
Amy Jenkins, Ph.D., DARPA	John Tisdale, M.D., NHLBI	
Keith Joung, M.D., Ph.D., Harvard Medical School/MGH	Fyodor Urnov, Ph.D., Altius Institute	
David Liu, Ph.D., The Broad Institute	Amy Wagers, Ph.D., Harvard University	
Bill Lundberg, M.D., CRISPR Therapeutics	Renee Wegrzyn, Ph.D., DARPA	
Harry Malech, M.D., NIAID	Zhaohui Ye, Ph.D., FDA	
SERVICES	Feng Zhang, Ph.D., The Broad Institute	

National Institutes of Health Office of Strategic Coordination - The Common Fund

Gaps Identified by Workshop Participants:

- 2. Cell- and tissue-specific delivery systems
- 3. Standardized assays for measuring genetic off-target effects
- 4. Improved editing machinery (nuclease alternatives)
- 5. Long-term cell tracking assays

Program Goals

Facilitate Phase I/II Clinical Trials of New Somatic Gene Editing Therapies by Developing and Providing Broad Access to:

> Animal Models for Gene Editing Research and Preclinical Testing New Methods to Assess Intended and Unintended Biological Effects

Efficient, Effective, and Specifically Targeted In Vivo Delivery Systems

Improved Human Gene Editing Tools

Proposed Initiatives

1. Better Animal Models for Testing Gene Editing Reagents and Delivery Systems

Develop gene editing reporter mice and large animal models Develop non-human primate and other animal models for use in preclinical studies

2. Assessing Biological Effects

Test gene editing strategies for detrimental consequences using a variety of assays Develop new technologies to allow for edited cells to be tracked *in vivo* over time

3. Improving In Vivo Delivery of Gene Editing Machinery

Improve and validate the efficiency, cell- & tissue-specificity, and safety of gene delivery systems Provide QC'd delivery systems to the research community as a service

4. Expanding the Human Genome Engineering Toolkit

Support the discovery and optimization of improved genome engineering technologies for therapeutic purposes

5. Coordination and Organizational Center

Assemble data from all program components into a coordinated data resource

Disseminate knowledge, tools, and methods to the community

Manage working groups and committees of the consortium (e.g., the Steering Committee)

Coordinate interactions with FDA, DARPA, NIST and industry

The NIH Gene Editing Consortium Will Interact with and Leverage:

The DARPA Safe Genes Program

The NIST Gene Editing Standards Consortium

The FDA Office of Tissues and Advanced Therapies, CBER

Related NIH Efforts, e.g., Immune Tolerance Network, Regenerative Medicine Project

National Institutes of Health Office of Strategic Coordination - The Common Fund

Potential Impact

- Increased access to IND-enabling technologies
- Accelerated filings of new INDs for gene editing therapies
- Faster approval of gene editing therapies
- New therapeutic approaches for both rare and common diseases
- Cures for monogenic diseases

NIH Somatic Cell Gene Editing Working Group Members

Olivier Blondel, NIDDK PJ Brooks, NCATS Chamelli Jhappan, NCI Tom Cheever, NIAMS Stephanie Courchesne, OSC/OD Colin Fletcher, NHGRI Maria Giovanni, NIAID Linda M. Griffith, NIAID Tim LaVaute, NINDS Jerry Li, NCI Nicole Lockhart, NHGRI Aron Marquitz, OSC/OD Oleg Mirochnitchenko, ORIP/OD Nasrin Nabavi, NIAID David Panchision, NIMH Mary Perry, OSC/OD Betty Poon, NIAID Jeff Struewing, NHGRI

