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Executive Summary 
 

The National Center for Biotechnology Information (NCBI), part of the National Library of Medicine, 
hosts one of NIH’s largest and most diverse datasets, the Sequence Read Archive (SRA). The SRA is a 
broad collection of experimental DNA and RNA sequences that represent genome diversity across the 
tree of life. As of March 2021, the SRA contains 16.5 petabytes of normalized data and is continually 
growing. To advance the research communities use of SRA, the resource was replicated on Google Cloud 
Platform (GCP) and Amazon Web Service (AWS) cloud services in 2019 as part of the NIH Science and 
Technology Research Infrastructure for Discovery, Experimentation, and Sustainability (STRIDES) 
Initiative.  

In March 2021, the SRA archive held over 14.5 million records in two formats. The original format (30 
petybtes of user-accessible data) is received by NCBI from submitters and is instrument- and 
experiment-specific; these data were originally stored to tape.  However, this made it difficult for 
researchers to access and use SRA, and thus these data are now being stored in the cloud. NCBI 
transforms these original format data into standard SRA normalized format (16.5 petabytes) for 
redistribution. The normalized format contains base quality scores (BQS) that provide information about 
the quality of each base in the sequence; however, because of the number of possible BQS for each 
base, these drastically increase file size, thus making BQS the largest cost driver for SRA storage in the 
cloud. 
 
 
The NIH has charged the SRA Data Working Group of the NIH Council of Councils to provide input on 
data retention, data models and/or data usage that will keep costs to NIH within sustainable levels while 
maintaining community access to this large public data resource. The SRA continues to experience 
exponential growth in submission rates, and the normalized format data is projected to grow to 57.5 
petabytes by 2025; at this rate, the increasing size will quickly exceed NIH budget for storage and 
maintenance of this valuable resource. The SRA Working Group’s charge is to provide recommendations 
to the NIH on several key factors for managing this data resource in cloud service provider 
environments. The NIH is requesting that the working group analyze and evaluate strategies for, or 
changes to, SRA data storage, manangement, and access, including its impact on the research 
community. The working group was also charged with providing input on future needs and 
opportunities, including sustaining SRA as a community resource. 
 

In deliberations leading up to their recommendations, the working group studied data on SRA growth, 
cost models for storage over time, frequency and breadth of data usage and access, tolerance for cloud 
data retrieval in cost models, and projections of future growth and use. In the data models and 
discussions, they considered how to promote cloud usage, ensure SRA data usage with equity and 
sustainability, and how to encourage and support developing tools/algorithms for cloud computing. The 
working group also summarized two categorical Key Performance Principles to offer a framework for 
evaluating current progress towards distributing SRA to cloud storage providers.  
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The recommendations in this report are intended to address immediate concerns about the SRA storage 
footprint, while the “Future Work and Considerations” section highlights the group's next steps in 
considering longer-term solutions for future efficiency of, and access to, this large data resource in the 
cloud. The final recommendations are: 
 
Promote cloud usage and ensure SRA data usage with equity and sustainability 

 
• Consider a more holistic and global view of commercial vs. open access clouds that would 

provide cost effective strategies for data deposition and use.  
• Provide guidance and transparency for SRA enabled cloud computing 
• Promote cloud computing usage with representative examples, training programs and user 

feedback (e.g., workshops, tutorials) 
• Consider the needs of users who do not use Google Cloud Platform (GCP) or Amazon Web 

Services (AWS) platforms, including those from under-resourced institutions 

Explore data usage, access frequency and tolerance for cloud data retrieval in cost model 
 

• Develop data-driven storage solutions, which involves defining the dynamics of SRA accession 
usage, identifying low-usage data, and moving low-usage data to cold storage 

• Understand cold storage retrieval time/cost impact to users 
• Understand relationship between data types and compute cost. Many computing costs are 

related to the data type.  
 

Consider incentives for researchers using SRA to develop tools/algorithm for cloud computing 
 

• NIH should incentivize investigators to promote cloud native analyses and collaborations 
through community-driven efforts to develop and enhance cloud-based tools and algorithms. 

• Advance petabyte scale sequence searching tools and focus on exemplars like SARS-CoV-2 and 
metagenomic data, and associated metadata 
 

Evaluate impact from SRA 
 

• Consider citations in publications or other citable objects 
• Partner with an analysis platform, develop metrics to capture user statistics and surveys  

 
The future work and considerations are: 

• User-centered Focus 
o Understand user cost and cost awareness education 
o Cloud benchmarks are needed 

• Interoperability standards to extend impact and reduce cost 
• Streamline guidance for cloud costs 
• Provide intermediate or processed data on cloud 
• Have a funding mechanism to support optimizing the existing cloud computing tools 
• Promote multi-cloud optimization of highly used (and new) tools 
• Promote submission of robust sample metadata 
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Background and Challenge 
 
The Sequence Read Archive (SRA) is a diverse collection of experimental DNA and RNA sequences 
derived from across the tree of life (see Appendices 1 and 2). The archive is hosted by the National 
Center for Biotechnology (NCBI) at the National Library of Medicine and provides a repository where 
submitters can share their data with attribution to a growing reservoir of deposited data that can be 
mined for historic trends and novel biomedical and other research discoveries. As such, SRA represents 
a dynamic dataset where the efforts of each data creator add over time to the increasing value of the 
corpus for subsequent analysis, supporting novel insights into genome architecture, genetic and 
epigenetic variation, gene expression patterns, discovery of novel organisms and viruses, and 
association of genetic signatures from complex microbiome and metagenomic samples with 
environmental attributes [1-7]. 

SRA holds both public data available to all researchers and controlled access data derived from human 
research studies that is available to qualified biomedical investigators who agree in advance to use the 
data appropriately. Sequence data in the archive is linked to sample metadata from the SRA records and 
associated BioSample and BioProject records that together provide information about the sequenced 
sample and can be used to associate genetic information in SRA with phenotypic, clinical, and 
environmental attributes [8]. Given its vast size and diversity, the SRA represents a crucial resource for 
the biomedical community and other scientific communities, and researchers have developed 
bioinformatic tools and methods that support deep analysis of SRA data – everything from assembly and 
annotation of new genomes, characterization of human pathogens, identification of processes that drive 
genome evolution, to prediction of the functional significance of rare human genetic variation [9-18]. 

As a result of the growth of the SRA sequence database, and its expanded use in answering research 
questions that require petabyte datasets, NIH partnered with Google Cloud Platform (GCP) and Amazon 
Web Services (AWS) in 2019, through the Science and Technology Research Infrastructure for Discovery, 
Experimentation, and Sustainability (STRIDES) Initiative, to move SRA to a cloud-based ecosystem. As of 
March 2021, all 14.5 million data records are available from each of the two cloud providers both in the 
original, instrument-specific format and the normalized SRA format totaling 16.5 petabytes of data. SRA 
is the largest dataset thus far to be included in the NIH effort to build a cloud-enabled biomedical 
dataverse, with new processes, tools, and architecture to drive development of an equitable ecosystem 
that makes NIH-funded data findable, accessible, interoperable, and reusable (FAIR) [19]. 

Moving SRA to commercial cloud service providers creates potential advantages for researchers, but 
also presents several considerations regarding the accessibility and sustainability of the resource. In 
2019, the NIH engaged a Council of Councils SRA Data Working Group to provide guidance for managing 
the archive in cloud service provider environments. Specifically, NIH requested that the working group 
identify and evaluate compression strategies to maintain efficiency in the storage footprint of SRA. This 
first Working Group presented a set of recommendations including deployment of a hybrid model that 
included the use of “hot” and “cold” storage tiers and the incorporation of SRA data files without base 
quality scores. This working group also recommended that NIH continue to monitor costs and feedback 
from the biomedical and other scientific research communities and continue to research potential 
changes to the model over time. In 2020, SRA Data Working Group of the NIH Council of Councils was 
empaneled and recharged as part of this ongoing evaluation with a focus on SRA sustainability and how 
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storage strategies impact the biomedical and other scientific research communities as well as costs to 
NIH.  

Status of SRA cloud storage and access  
 

The entire corpus of SRA data records is stored locally by NCBI and replicated on both the GCP and AWS 
cloud platforms. In accordance with the hybrid storage model, three different file types are maintained 
for each data record with two cloud vendors using same storage model: 

(1) An original format as submitted to NCBI from data providers that reflects the results of a 
submitter’s particular instrument output and analysis computational pipeline (e.g. BAM, FASTQ). 
These files had previously been stored on tape at NCBI, and this is the first time that this format 
is readily accessible, and it is now only available through the cloud providers. 

(2) A normalized version (termed extract, transform, load or ETL) of the data is created for all 
submitted data. This format supports interoperability across data originally provided in multiple 
formats and more compact storage.  

(3) A normalized format without base quality scores has also been introduced (termed ETL-BQS) 
wherein base quality scores (BQS) are entirely removed or replaced with binary read quality 
scores to further reduce the storage footprint. 

Recommendations from the 2019 SRA Working Group included deliberations and studies of SRA growth, 
cost models for storage over time, frequency and breadth of data access and projections of future 
growth and use. This working group considered the size and value of BQS and the availability of both 
"hot" and "cold" storage in the cloud. "Hot” storage provides immediate access to data and is the 
default standard. Data in “cold” storage is not immediately accessible but can be stored at a reduced 
cost with a charge to “thaw” (move) data from cold to hot storage. The working group also used 10 
principles to guide its recommendations: continuous access to training datasets, quality of data available 
for analysis, prioritizing availability of frequently accessed datasets, NIH costs, user costs, barriers to 
access, speed/wait time to access, access to normalized and original formats, search and random access, 
and flexibility and adaptability. 

Based on these recommendations, the three SRA data formats are distributed among two storage tiers 
in each cloud provider, a hot tier that provides immediate access to data and a less expensive cold tier 
where data may not be immediately accessible. The hybrid data model posits that both original format 
data and the less used 50% of ETL data are stored in cold storage tiers on commercial cloud platforms. 
This is the current structure of SRA on the two cloud service providers, and the details of data size 
footprints across formats and tiers will be discussed in further detail below (Table 1). 

To enable researchers to utilize SRA on the cloud providers, SRA data can be searched through the NCBI 
web resources as well as tabular query interfaces associated with AWS and GCP and retrieved from hot 
and cold storage through the web-based Cloud Data Delivery Service (CDDS) [20] and programmatically 
through the SRA toolkit for hot storage. Data can be copied from AWS and GCP hot storage locations 
using cloud provider CLI tools and standard command line tools like wget after retrieving the data 
location from NCBI's data location service or from NCBI web resources. Additionally, researchers may 
directly utilize data for cloud-based analyses, removing the need to make an additional physical copy 
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either locally or in a cloud environment and reducing overall costs. During 2020, more than 48 petabytes 
of data were downloaded from SRA, and greater than 10% of this was accessed from cloud platforms.   

 

Growth of SRA and Working Group Charge 
 

SRA continues to grow exponentially and included nearly 17 petabytes of public and controlled access 
sequence data as of March 2020 (see Figure 1). While this growth correlates with increased value of the 
resource to the research community, it also has a profound impact on the financial sustainability of the 
resource going forward. The current SRA Working Group was charged with providing recommendations 
to the Council of Councils on both the cost and the impact of distributing this resource to cloud service 
provider environments. The SRA Working Group charge is: 

(1) Analyze and evaluate strategies for, or changes to, SRA data storage, management, and access, 
including impact for the biomedical research community. 

(2) Make recommendations on data retention, data models, and data usage that will keep costs to 
the NIH within sustainable levels while maintaining community access to this large public data 
resource. 

(3) Provide a vision for future needs or opportunities, including sustaining the SRA as a community 
resource. 

 

 

Figure 1. Historic growth of SRA by consent type, public and controlled access. Size of a single copy of 
SRA is plotted for both public and controlled access data in ETL format. 
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Projected growth of SRA in the context of the hybrid storage model 
 

The hybrid SRA storage model maintains three data formats for each submitted data record – original 
format, normalized ETL, and normalized ETL without base quality scores (ETL-BQS) – and projected 
growth in the number and size of submitted data records seen in Figure 1 is amplified across the three 
data formats, profoundly impacting the total footprint of the archive, a single copy of which is projected 
to grow by 50 PB over the next 4 years (Figure 2). The hybrid model defrays the increased cost of 
maintaining multiple formats for each data record by utilizing a lower cost cold storage tier for original 
format and less used, standardized ETL formatted data. The model posits that only more highly used ETL 
data and all ETL data without base quality scores (ETL-BQS) is maintained in the more expensive hot 
storage.  

Replicating this model and associated storage footprint across multiple cloud providers increases 
accessibility, convenience, and cost efficiency to the research community while also potentially 
mitigating price monopoly concerns associated with a single cloud service provider. However, these 
benefits to researchers come with a significant increase in SRA operational costs, and requires careful 
assessment of the two tenants of the model, use of ETL-BQS format and cold storage tiers. 

Base quality scores quantify the error probability for each base and represent 60-70% of the storage 
footprint in original format SRA data and on average 60% of the footprint of ETL formatted data. 
Because there are 63-94 possible BQS values for each nucleotide base, they are difficult to compress. 
Although many studies have investigated methods for BQS compression [21-25], no clear consensus 
approach has emerged within the research community, and different strategies may be preferred for 
different SRA data use cases. NCBI has pursued two approaches to reducing the footprint of BQS, first 
replacing them with single binary quality score for each read, and second, by dropping them entirely 
after aligning reads to a reference in a storage object that also retains unaligned reads. These 
approaches greatly reduce the overall storage footprint compared to ETL formatted data with base 
quality scores (see Figure 2), and if accepted by the research community, these provide advantages to 
both NIH storage cost and scientific use of data at scale. 
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Figure 2. Projected growth of a single copy of SRA by data format and consent type, public or controlled 
access. Projections were fitted to historical growth data using an exponential curve with smoothing. For 
simplicity, the 95% confidence intervals for the fit are omitted, but represent approximately a 25% 
increase or decrease in the sizes depicted in this figure. 

 

The largest portion of the overall SRA storage footprint is the original formatted data submitted to the 
archive (see Figure 2). While this format can contain additional data elements important to analysis or 
originate from newer sequencing technologies where the development of accurate base calling software 
is ongoing, for most use cases original format is functionally replaced with ETL. To make data available 
when needed while maintaining efficient storage costs, both original format and the less used portion of 
ETL data are maintained in lower cost cold storage tiers. This saves significantly on NIH costs but 
increases the “wait” time between data request and delivery. Delivery time is impacted by two factors, 
cold to hot restore time - which is dependent on cloud providers technology - and transfer speed from 
the NCBI hot bucket to the user bucket. Transfer speed is influenced by three factors, transfer speed 
within the cloud provider’s network, number of parallel machines that are used to deliver the data, and 
the size of files being transferred. Using logs from the NCBI CDDS, NIH investigated the time to deliver 
data from cold storage under real world conditions. Median wait times based on actual retrieval events 
through CDDS are 0.5 hours for data located in GCP cold storage and 14 hours for AWS cold data and 
indicates initial ‘thaw’ time. In addition, researchers may need to transform these data into other 
formats so that they can be used for analysis by other computational software, and this transformation 
will add additional time. 
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Integration of SRA data into AWS Open Data Program 
 

One key development since 2020 is the expansion of the AWS Open Data Program (AWS ODP) within the 
STRIDES initiative. This program supports storage of data at no cost to NIH or users who can freely 
download data to their own cloud, local locations, or access the data for analysis in the cloud without 
copy. The initial STRIDES AWS ODP allocation of 2 PB to SRA was used to host datasets in original format 
requiring reprocessing of base calls due to frequent updates to base calling algorithms and pipelines. 
The new STRIDES agreement with AWS ODP supports an additional 12 PB of hot data storage which is 
being used to host public SRA records in the normalized ETL format.  

Inclusion of additional storage space in the AWS ODP significantly impacts accessibility and essentially 
presents a best-case scenario wherein the scientific research community has no-cost, high-bandwidth 
access to normalized SRA data. The transfer of public SRA ETL data to the new AWS ODP cloud storage 
began in January 2021. During this time there has been a clear uptick in usage of AWS ODP hosted data 
(Figure 3), surpassing the usage observed from NCBI servers in March 2021. While this trend could 
reflect temporary activities, the increased usage came from both cloud and non-cloud users, 
underscoring the positive impact on all SRA users.  

AWS ODP also provides the opportunity to create novel implementations for important datasets. For 
example, a specialized SARS-CoV-2 dataset is maintained in AWS ODP that includes original and ETL 
formatted SRA data, as well as ETL formatted data without base quality scores [26]. The ETL-BQS format 
implemented for SARS-CoV-2 ETL-BQS data removes base quality scores through alignment to reference 
genome sequences to create a multi-purpose data object that includes a consensus sequence as well as 
representation of read coverage, depth, and positional variation. Unaligned reads are retained, and both 
aligned and unaligned reads can be extracted from the object to use in analysis and processing pipelines 
that require them. To support rapid comparisons between SARS-CoV-2 data records, this dataset also 
includes gene and protein annotations as well as nucleotide and protein variant data stored in the 
Athena query service. NCBI is now providing the same SARS-CoV-2 SRA dataset through the GCP Public 
Datasets Program which also provides free user access to data at no cost to NIH. 
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Figure 3. SRA public data usage. Number of interactions with public SRA data records hosted by NCBI 
servers, GCP, commercial AWS, and AWS Open Data Program (AWS ODP) are plotted for each month 
since November 2019. Figures include only accessions accessed by external, non-NCBI users. During 2020 
total SRA data usage from cloud sources represented 10% of total SRA retrievals. Transfer of public SRA 
in ETL format to AWS OPD was initiated in January 2021.  

 
Impact of hot/cold distribution on cost model projections and user access 
 

The integration of AWS ODP augments the original hybrid SRA storage plan (see Table 1). While original 
formatted SRA data is distributed to cold storage tiers on both AWS and GCP, it is currently not 
necessary to store the less used 50% of ETL formatted data in the AWS cold tier. Instead, ETL formatted 
data is stored in AWS ODP hot tier, and only the amount of less used data necessary to sustain the 12 PB 
cap is moved to commercial AWS cold storage tier. Although the plan is to provide ETL-BQS data on both 
GCP and AWS commercial platforms, this format is currently only available on GCP.  

 GCP Hot GCP Cold AWS ODP Hot AWS Hot AWS Cold 
Source 1 PB 27 PB 1 PB*  27 PB 
ETL 8 PB 7.8PB 10.1 PB** 3.7 PB** 2 BP 
ETL-BQS 2.8 PB N/A N/A N/A N/A 

Table 1. Current implementation of SRA hybrid storage model. *1 PB storage buffer remains in the 
original AWS ODP bucket to accommodate future source files requiring frequent reprocessing of base 
calls. **Distribution of data to AWS ODP is still in progress and when complete there will be no ETL data 
in the AWS hot commercial buckets and 12 PB of data in the AWS ODP bucket.  
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Including AWS ODP in the SRA cloud storage allocation provides substantial cost savings to NIH 
compared to the original hybrid model (Figure 4). Nonetheless, projected storage costs to NIH will 
continue to rise even with this addition, increasing by 46% over current levels in FY 2025. Therefore, NIH 
has continued to investigate other cost mitigation strategies, including those that emphasize the use of 
cold storage tiers. NCBI analyzed overall usage for each data record as well as trends in time to next 
retrieval (i.e., the relationship between an initial request for a data record and subsequent requests for 
the same data record). Based on historic data usage, time to next retrieval was found to be essentially 
stochastic, so NCBI focused on optimizing storage tier distribution based on the frequency of data record 
use over the course of time.  

Storage tier distribution models integrated both storage costs as well as retrieval costs associated with 
“thawing” data from cold storage. This latter cost is important to note as NIH is currently paying for cold 
storage retrieval costs with monthly caps placed on individual users. Based on this analysis, data records 
with more than 8 retrievals per year were more efficiently stored in hot storage tiers. Though more than 
75% of data records are accessed annually, records with more than 8 retrievals per year comprise less 
than 10% of the total, implying that the data distribution between hot and cold storage tiers can be 
amended to improve NIH cost efficiency. The resultant hybrid model with 12 PB of ETL data allocated to 
the AWS ODP hot tier and only 10% of ETL allocated to commercial GCP hot tier reduces cost projection 
by 40% compared to the original hybrid model in FY2025 (Figure 4). 

 

 

Figure 4. Projected SRA cloud storage and retrieval costs to NIH. Projections include three different 
storage scenarios wherein original source, normalized ETL, and normalized ETL without base quality 
scores data is allocated to both GCP and AWS cloud platforms. The first scenario reflects the original 
50/50 hybrid model wherein 50% of normalized ETL data is allocated to hot storage tiers, and 50% stored 
in cold storage tier. The second scenario (50/50 hybrid model with AWS ODP) includes integration of the 
AWS ODP into the original hybrid storage model. The third scenario (10/90 hybrid model with AWS ODP) 
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distributes the less used 90% of ETL formatted data to the cold GCP storage tier. Storage cost projections 
are based on the growth of different data formats in Figure 2. In scenarios that include AWS ODP, the 
most used 12 PB of ETL formatted data is distributed to hot open data storage and the rest to 
commercial cold storage. Cold storage retrieval costs were calculated based on historic usage logs on 
NCBI servers and are included in the overall cost calculations presented in the graph. Error bars reflect 
the 95% confidence interval provided by the growth projection curves. 

One potential issue with increasing the cold storage allocation is the impact on access caused by 
increased duration between data request and retrieval. These wait times vary between the two current 
STRIDES partner cloud providers, as do cold storage and thaw costs, but delays between data request 
and retrieval may be acceptable for typical use cases. This is particularly true when larger numbers of 
data records are requested, and any delays are offset by processing times required to deliver data from 
the commercial cloud provider bucket to the user cloud bucket or local machine. For example, the 
average retrieval time experienced for all CDDS data orders was 1.5 Gigabytes (GB) per minute, but the 
retrieval times for orders containing more than 100 GB of data averaged 3.8 GB per minute. 

 

Communicating the hybrid SRA cloud storage model to the scientific community 
 

The previous working group also recommended that NIH communicate the hybrid SRA cloud storage to 
scientific communities and evaluate updates to the model based on feedback. As part of these outreach 
efforts, NIH released a Request for Information (RFI), Use of Cloud Resources and New File Formats for 
Sequence Read Archive Data in July 2020 [27]. The key findings of this RFI are summarized below: 

• 75 responses were received from 12 countries, and these were affiliated with academic (77.3%), 
government (9.3%), industry (6.7%), and nonprofit (6.7%) institutions. 

• 65% of responders reported that they appreciated the NIH’s efforts to maximize efficiency in 
retrieval through introduction of new data formats without BQS.  

• Over 80% reported that BQS are critical for their analyses and requested that data be retained in 
the original FASTQ format. 

• 17% reported that they were currently using SRA in cloud.  
• 52% of responders expressed concerns about the unpredictable cost of using cloud computing 

platforms and felt that cost was more easily managed on their local high-performance 
computing system. 

 
Responses from the RFI underscored two major themes; there is hesitancy among some SRA users about 
the move to the cloud storage, and there is continued need to communicate the data model – including 
information about SRA data formats, accessibility, and costs – to the user community. 
 
Updates to the hybrid cloud storage model addresses some of the concerns expressed in the RFI. 
Moving ETL data to AWS ODP effectively deemphasizes the role of ETL-BQS data formats as part of the 
NIH cost mitigation strategy and extends the timeline for continued community outreach around these 
data formats. While the majority of RFI respondents appreciated the effort to deploy SRA formats 
without BQS to help reduce overall storage cost associated with the archive, clearly work remains in 
associating data formats with specific use cases and refining data formats to efficiently meet those 
needs. 
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Key Performance Principles for maintaining SRA storage efficiency 

The previous NIH Council of Councils SRA Working Group emphasized the importance of aligning cloud 
storage models with community use cases and identified 10 principles to consider when proposing 
recommendations for maintaining efficiency in the SRA storage footprint. Based on those principles, the 
current NIH Council of Councils SRA Working Group summarized two categorical Key Performance 
Principles (Table 2) to offer a framework for evaluating current progress towards distributing SRA to 
cloud storage providers. The working group noted that metrics for the principles will need to be further 
developed and suggested a standing SRA Advisory Committee. 

Category SRA Key Performance Key Performance 
Principle  

A. Data 
quality 

Creation and distribution of original, ETL, and ETL-BQS formats that 
meets criteria for fitness for purpose 

a. ETL format 
b. Specification of new ETL-BQS formats 
c. Original format 

1, 2 

Distribution of SRA, BioSample, and BioProject metadata with 
sequence data 

d. Support access to sequence metadata 
e. Support data communities with specific metadata needs 

5 

Development of tools to support search of data 

f. Metadata-based search 
g. Sequence-based search 

6 

Improve value of data 

h. Provide analysis of data (e.g. SRA Sequence Taxonomic 
Analysis Tool STAT) 

i. Support metadata packages 

4 

B. Equitable 
user access 

Distribution of data in hot and cold storage 8 

Support data access for both cloud and non-cloud users 

a. Open Data and Public Dataset Programs 
b. Tools/interfaces to support data retrieval from hot 

and cold storage (e.g. CDDS) 

3,7 

Replicate SRA among STRIDES cloud service providers 9 

User costs on data retrieval/egress to different cloud platforms 7,8 
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Training and outreach for competency  

a. General 
b. Minority-focused 

4 

Partnerships among US Government agencies 10 

Table 2. Key Performance Principles for evaluating success of SRA maintenance and use in the cloud. 

Key Performance Principles: 

1. Data are readily available in common formats (e.g., original format, ETL, ETL-BQS) to support 
both cloud and non-cloud users’ need. 

2. As defined by a time period, the most frequently accessed datasets are always readily available 
from multiple sources. 

3. Open Data and public datasets are immediately or up to less than 24hours (dependent on data 
size) available. 

4. “Training Datasets/Tools” are updated, maintained and always available in ALL locations with no 
associated costs.  

5. No intentional discrepancies in ability to discover, access, compute upon, or analyze data, data 
to adhere to FAIR principles.  

6. Sequence search and data analysis tools are available for supporting SRA and specific metadata 
sequence data, metadata to be digestible by third party tools.  

7. User costs are well defined and a mechanism to ameliorate those costs for under resourced 
investigators is developed. 

8. Optimize hot and cold storage distribution to save costs for both NIH and users. 
9. Costs to NIH are under allocated amount in the budget and are increasing at a rate no greater 

than the yearly expected increase in that allocated amount. 
10. Collaboration with other US Government agencies to serve broader research communities by 

developing advanced tools and improving data repositories interoperability. 

One key positive development is the inclusion of original formatted data in cold storage. This is the first 
time this data has been readily available without special request and will allow access in cases of need 
and clear assessment of value against normalized ETL and ETL-BQS formats. The inclusion of ETL data 
formats in the AWS Open Data program has also greatly impacted progress within these principles. This 
development reduces NIH storage costs and obviates user retrieval costs. It also ensures easy and fast 
access to training datasets and other highly accessed SRA records. Integration of the AWS ODP storage 
platform and commercial cold cloud storage tiers with the web-based Cloud Data Delivery Service [20] 
provides a seamless approach to retrieval of public data regardless of cloud location and in doing so 
greatly lowers barriers to data access.  

Integration of controlled access data into AWS ODP would improve accessibility to this data. That said, 
controlled access data presents a unique set of security requirements and access considerations 
including the need for special access keys or authorization schemes for cloud-hosted data and the 
distributed data storage model across multiple NIH Institutions. These will need to be addressed 
through direct collaboration with AWS ODP and the integration of NIH-wide authentication, 
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authorization, and auditing systems like the Researcher Auth Service Initiative [28] and federated data 
access models like the NIH Cloud Platform Interoperability Effort [29]. 

Work remains in creating more cloud-native approaches to data search and analytics – both keyword 
and sequence string-based approaches – as well as approaches to identify higher and lesser “quality” 
datasets based on sequence and metadata metrics. Both activities are important to continued progress 
as they will directly impact the ability to locate data of interest and may also help to inform future 
iterations of the data model. While the hybrid model remains somewhat adaptable, it should be noted 
that it does not completely solve the problem of storing a growing resource within a constrained 
budget. This would be particularly true if new cloud providers were integrated into the STRIDES program 
and a complete copy of the SRA was replicated in the new platforms without commensurate increases in 
the budget. User compute costs will also continue to be a significant barrier to cloud data usage until the 
scientific community has sufficient knowledge, resources, and incentives to move current analysis 
pipelines from local environments to the cloud.  

 

Relative cloud cost with AWS ODP 
 

1.    NIH costs: NIH currently bears many of the costs associated with SRA data storage and retrieval on 
multiple cloud platforms. Currently, NIH pays for the following: 

a.    Costs of NCBI compute to provision data in AWS and GCP clouds. 

b.    Costs for storage of SRA data on these platforms in two formats (original and normalized). 

Under models involving a split between hot and cold storage (with the goal of maintaining an 
affordable mix of hot and cold storage for active and infrequent SRA records), NIH would 
additionally be responsible for the cost of thawing any data from cold to hot storage. See Table 3 
and documentation on user costs for estimated average costs for NIH and users for some typical 
workflows. 

2.    User costs: The working group discussed concerns about the financial burden on users who would 
have to pay egress costs to download their data from the cloud. Currently, NIH-funded or other 
federal agency funded investigators/institutions pay for the following: 

a.    Costs of user compute instances in the GCP or AWS cloud. 

b.    Egress fees if users wish to download the data from a cloud platform to their local 
computational environment or alternative cloud environment. 

c.  Data storage costs (local or cloud-based) if the user decides to create a replica of the data.  

See Table 3 and documentation on user costs for estimated average costs for NIH and users for 
some typical workflows. It is noted that researchers directly accessing data in the cloud for 
downstream analysis without copying or downloading them achieve significant cost savings versus 
alternative models. However a relatively limited number of researchers currently have expertise to 
benefit from these savings. 

 

https://www.ncbi.nlm.nih.gov/sra/docs/sra-cloud-access-costs/
https://www.ncbi.nlm.nih.gov/sra/docs/sra-cloud-access-costs/
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For the purposes of Table 3, NCBI identified three common use cases for SRA data. The first two cases 
below use subsets of the data, while the third case (global search) may require access to the entire 
corpus of SRA data. These use cases are as follows: 

1. Replication of a published study, which would require original format data with BQS; 
2. Reanalysis of data for genetic variation detection, which requires normalized format data with 

BQS; and 
3. Other discovery tasks, e.g. metagenomic profiling, expression analysis, and global sequence 

search, which can use normalized format data without BQS. 

Role Activity 
(relevant use case[s]) 

Data upload to 
cloud platforms 

Storage 
Hot/Cold 

Thaw Egress Compute 

NCBI 

SRA Submission Dataflow: 
estimates based on data 
from November 2019 only 
(all use cases) 

 500 TB/ month. 
Data ingress is free. 
NCBI pays SRA labor 
costs to process. 

       

NIH SRA Archive 
(all use cases) 

 $150,000 / 
month (avg 
per cloud 
copy of SRA, 
~10 PB) 

      

NIH 
NCBI 

Develops and operates 
search algorithms 
(Use case 3) 

        Variable (cost) 

NIH Charge to thaw original 
format data (always cold) 
or normalized format data 
with BQS (mix of hot and 
cold)  
(Use cases 1 and 2) 

    $27/TB 
thawed 
(avg) 

    

User 

(Optional) Egress data to 
different cloud platform 
(all use cases) 

      $100/TB 
(avg), No 
cost 
from 
AWS 
ODP 

Variable (cost) 

User Compute on selected data 
in the cloud 
(all use cases) 

        Variable (cost) 

Institution Provide hardware 
platform to access the 
cloud (i.e., desktop and 
internet connection) 
(all use cases) 

        Substantially 
lower cost than 
hardware 
necessary for 
local compute 

User Download data for local 
compute 
(all use cases) 

      $100/TB 
(avg), No 
cost 
from 
AWS 
ODP 

Costs per 
institutional 
policy 

Institution Provide hardware for local 
compute 
(all use cases) 

        Substantially 
higher cost than 
hardware 
necessary for 
cloud access 
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Table 3. Relative costs of activities for common use cases of SRA and their distribution across entities 
in pilot efforts. 

WG Recommendations 
 

Framed by the new charges, the current SRA Working Group presented a new set of recommendations 
after reviewing the Report from the previous Council of Councils Working Group on SRA and the 
Summary of Responses to the Request for Information (RFI) on use of cloud resources and new file 
formats for SRA Archive data, which was conducted by the NIH Office of Data Science Strategy (ODSS) in 
July 2020 [27]. The current SRA Working Group also studied updates to SRA status, as articulated in this 
report and in response to the prior working group recommendations. Considering all of this information, 
the SRA Working Group (WG) members agreed on the following new set of recommendations:  

Promote cloud usage and ensure SRA data usage with equity and sustainability  
 

• Consider more cost effective strategies for data deposition and use through communications 
and negotiations with cloud providers (open or commercial) 

• Provide guidance and transparency for SRA enabled cloud computing 
• Promote cloud computing usage with representative examples, training programs and user 

feedback (e.g., workshops, tutorials) 
• Consider the needs of users who do not use GCP or AWS platforms, including those from under-

resourced institutions 

 

NIH’s effort of implementing the hybrid storage model helps promote SRA’s sustainability. However, this 
solution cannot keep pace with constrained budgets and the exponential growth in SRA data. NIH should 
provide cost effective strategies for the research community. For instance, NIH can communicate to 
stakeholders about storage and retrieval models and the open access program. Meanwhile, NIH needs 
to identify approaches that mitigate costs associated with cloud data storage without replicating SRA 
across more cloud providers. Different groups of users have experience and workflows on different 
cloud vendors. NIH should communicate and continue to engage different cloud vendors. 

Working group members noted that cost-effective cloud computing is challenging for many researchers. 
NIH should consider providing normalized or pre-processed datasets to reduce researcher compute and 
usage cost; consider establishing best practices for cloud computing with estimated schedules and 
transparent costs. Researchers need to have more information to help select feasible workflows with 
the knowledge of the estimated analysis timeline and cloud computing cost. Additionally, continued 
education including guidance about inclusion of cloud computing costs in NIH or other federal agency 
funded awards is critical to support investigators at institutions without significant experience working 
in cloud environments. 

NIH should increase outreach to minority serving institutions for targeted cloud-based training and 
consider lowering the cost of SRA data usage for example through the AWS Open Data Program. NIH 
should enhance its leverage of AWS ODP and cloud credits as a model to provide egress-free access and 
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promote cloud usage of SRA in the research community. In addition, NIH should promote usage, 
training, and feedback by engaging researchers with different cloud usage experience, learn their 
comfort levels and tailor efforts to different user segments based on their familiarity with the cloud. For 
instance, providing easily accessible video tutorials to demonstrate common use cases and workflows, 
and providing user-friendly data access and analysis platforms to accelerate awareness, education and 
training for novice and intermediate cloud users. To improve effectiveness of training programs, NIH 
could consider focusing on training the-trainers (e.g., librarians, power users) who have a channel or 
mechanism for outreach within their institution or networks. 

 

Explore data usage, access frequency and tolerance for cloud data retrieval in cost model 
 

NIH needs to explore SRA data usage patterns, access frequency, and learn researchers’ tolerance for 
cloud data retrieval. It needs to be evaluated whether amending storage models to include more data in 
cold storage will benefit NIH and save budget for funding more data storage. This should include impact 
of research delays in accessing cold-stored data and researchers’ tolerance for data retrieval time. 
Further assessment of the cost model is also needed after implementing updates to the hybrid SRA 
storage model. For example, metrics need to be created to evaluate researcher data access frequencies, 
data access patterns and time cold data is held in hot storage. NIH should develop data-driven storage 
solutions, which involve defining the dynamics of SRA accession usage, identifying low-usage data, and 
moving low-usage data to cold storage. SRA WG members encourage the NIH NCBI team to develop 
robust APIs to SRA (e.g. RAS [28]) that can provide more information about user data access patterns. 
Partnering with data analysis ecosystems developed by various Institutes and Centers (for example the 
NHLBI BioData Catalyst, NHGRI Anvil, NCI Cloud Resources, and others) may not only expand the use of 
SRA data for less computationally savvy users, but also enable greater detail about the types of analyses 
and workflows that are being performed with SRA data. 

Working group members noted that different research use cases require different SRA formats and NIH 
needs to understand the relationship between the SRA sequencing data formats and their compute cost. 
Many computing costs are highly related to the data formats. For instance, most mature analysis 
workflows require the original sequencing data in FASTQ format. The data conversation from 
compressed BAM format to FASTQ format is time consuming and expensive on the cloud. NIH should 
consider providing a normalized data format to be ready for downstream analysis, for example, offering 
gene reads counts data for RNA-Seq datasets. NIH should also consider proactive communication when 
data conversion is needed with research community. 

 

Consider incentives for researchers using SRA to develop tools/algorithm for cloud 
computing 

 

NIH should incentivize investigators to promote cloud native analyses and collaborations through 
community-driven efforts to develop and enhance cloud-based tools and algorithms. Ideally this would 
involve leveraging and adapting the existing tools, such as updating sequencing assembly tools, genes, 
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and mutation annotation tools. The working group stressed the need for, and importance of, advanced 
petabyte scale sequence searching tools. For improving platform agnostic cloud data usage, NIH should 
focus on exemplars like SARS-CoV-2 and metagenomic data, and associated metadata. 

Evaluate impact from SRA 
 

• Consider citations in publications or other citable objects 
• Partner with  analysis platforms, develop metrics to capture user statistics and surveys  

The SRA working group members recommend that NIH develop and monitor more advanced metrics for 
assessing the impact of SRA for biomedical researchers and for the larger research and training 
community. The members suggested that NIH gather the following information to be used in the 
evaluation of the impact of SRA:  

o Conduct PubMed searches or reach out to both research community and journal editors 
to track the success of research projects using SRA data. 

o Facilitate metrics development for assessing the SRA data usage, advocacy, integration, 
and SRA interoperability with the other NIH data repositories. 

o Partner with an analysis platform to obtain reports on SRA data access frequency and 
types. 

o Working group members suggested that NIH could consider conducting a survey with 
researchers on their use of SRA data in their curricula for training. 

o Engage with training platforms (e.g., Galaxy) to obtain SRA usage information. 
o Obtain information on intended use of data from users during download through a list 

of common user cases with an optional description field. 

Furture Work and Considerations 
 

User-centered focus 

Many of the design principles underlying our recommendations focused on the reality of the user 
community—a group largely unaware of how to use the cloud as a research platform.  Moreover, this 
community is comprised of people from a variety of backgrounds, with a range of competencies, and 
from institutions with varying infrastructural agreements or procedures. This group cannot predict the 
impact of our decisions on this community. It will be incumbent upon the NIH (indeed the entire PHS) to 
understand and minimize the unintentional impact this change to cloud-based data and computation 
has on the research capabilities of the user community.  We recommend periodic surveys focusing on a 
nationally representative sample of this community, collecting data from both researchers and research 
administrators to understand: 

• Financial cost of use 
• Educational gaps and exemplar strategies to overcome any local challenges 
• Performance (time to complete projects related to STRIDES-accessed data and compute) 
• Cost-shifting (new costs to the user or institution that were previously borne by the NIH or other 

facilities.) 
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These data should inform iterative improvements in the resources available to researchers/research 
institutions/the NCBI/NIH. 

 

Interoperability standards to extend impact and reduce costs 

Over the last several years significant progress and alignment has been made across multiple cloud-
based environments to define standards for data access, exchange, and computation. Relevant 
examples include the NIH Researcher Authentication Service (RAS) and key standards from the Global 
Alliance for Genomics and Health (GA4GH) such as Data Repository Service (DRS). Implementation of 
these standard APIs can enable existing cloud-based analysis environments to interoperate with SRA 
data readily and cost-efficiently. This in turn expands the number of users that can directly benefit from 
SRA data ‘in situ’, ie without requiring an additional cloud- or local- copy of data. The NIH should 
continue to encourage development, implementation, and adoption of these standards to ultimately 
support the end user community and lower overall data storage and analysis costs.  

 

Streamline guidance for cloud costs 

This is a crucial moment in biomedicine, where we are coming to realize that compute and storage (as 
well as computational personnel) are an increasingly important component of modern biomedical 
research.  This also means that the cost of supporting these capabilities is rising.  At the same time, NIH 
funding models have not kept pace with this phase change, such that we are both expecting that our 
storage costs will remain constant (which would require defying a law of physics) and also creating 
perverse incentive structures where cloud costs come out of direct funding, but on prem computing 
comes out of indirect.  For the NIH at large, cloud presents a clear cost savings mechanism, wherein, 
rather than paying for the costs of storing popular datasets at every medical center, we can instead pay 
for only one copy in the cloud.  We should all recognize, however that this is a significant change in how 
biomedical research is done. The working group emphasized that the SRA team is doing impressive work 
in managing this transition and recommends that the NIH encourages use and availability of cloud 
credits to make use of SRA in the cloud. 

 

Provide intermediate or processed data on cloud 

Gene expression analysis is the one of the most common use cases for RNA-seq data. Currently, a user 
needs to download fastq files, performs mapping using tools such as STAR (Dobin et al, 2012) to an 
assembled reference genome, and then prepare feature counts using programs such as HTSeq (Quinlan 
and Hall, 2010). The feature count file has a small footprint (float data for 20,000 rows per human 
sample) compared with the raw RNA-seq data file. Availability of a feature count file will enable 
performing analysis such as differential gene expression across different cancer subtypes, construction 
of gene expression network, and identify potential drug targets uniquely expressed in patient samples 
without the need to download, store and analyzing the fastq files. Genetic variant data is another 
immediate data set that was accessed regularly, and pre-computed variant data files (in the VCF format) 
can eliminate the need for performing mapping and variant calling using the raw data.  
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Have a funding mechanism to support optimizing the existing cloud computing tools 

Optimization of existing computing tool for Cloud usage is essential for bringing more users to the Cloud 
platform, which will ultimately reduce the cost for storage and computing for the broad research 
community. There are several considerations: 1) how to utilize the cloud resource more efficiently so 
that computing cost can be reduced using the low-priority nodes/queues; 2) how to take advantage the 
elasticity of cloud computing to ensure delivery of time-sensitive results (e.g. COVID 19 variant analysis 
in an outbreak); and 3) how to implement a time-out mechanism to protect users from getting charged 
with unexpected cost due to issues with low-quality or complexity of the data. Furthermore, tracking the 
usage of cloud-deployed tools may motivate software engineers to make effort in code optimization as 
broad adoption by the research community is a major motivation/reward for those who developed the 
software tools. 

 

Promote multi-cloud optimization of highly used (and new) tools 

Software and analysis tools need to be adapted and optimized specifically for each different cloud 
environment. Since most new tools are often developed by postdocs or computational students, this 
presents a huge barrier for the developer who has no vested interest in undertaking the efforts required 
to make their tools cloud agnostic. Tool optimization typically occurs in a local environment, or a single 
cloud environment, where tool use is describe (often in a publication), and then left for users to work 
out their own subsequent use and optimization. It’s typically much easier for the user to test and 
optimize a tool in their own local environment (at little to no cost for ‘errors’) and then download data 
for analysis. For widely used tools some incentive should be provided to the tool creators to undertake 
this multi-cloud optimization of those tools, using the same set of data housed on different clouds. 
Additionally, small grant supplements could be made available to encourage new tool developers 
(postdocs etc) to also do the same? 

 

Promote submission of robust sample metadata 

To improve the possibility of reproducible science and foster the principles of FAIR data accessibility, 
integration, attribution as well as the subsequent linking of related data as outlined in the Biodiversity 
Collections Network (BCoN) Extended Specimen Network report 
(https://academic.oup.com/bioscience/article/70/1/23/5637849) and National Academies of Sciences, 
Engineering and Medicine report on Biological Collections (https://www.nationalacademies.org/our-
work/biological-collections-their-past-present-and-future-contributions-and-options-for-sustaining-
them), we recommend that NIH consider working collaboratively with the various stakeholder 
communities to develop and deploy standards and best practices for metadata associated with 
sequence information.  These standards should include the ability to link voucher sample information to 
sequence depositions in order to validate taxonomic identity and provide attribution to collections 
housing these tissue and voucher materials. Standards should be widely dissemninated and best 
practices described in depositor guidelines to ensure complete and correct metadata submission to SRA 
and BioSample.  Recommend that NIH consider methods to provide community input into curation and 

https://academic.oup.com/bioscience/article/70/1/23/5637849
https://www.nationalacademies.org/our-work/biological-collections-their-past-present-and-future-contributions-and-options-for-sustaining-them
https://www.nationalacademies.org/our-work/biological-collections-their-past-present-and-future-contributions-and-options-for-sustaining-them
https://www.nationalacademies.org/our-work/biological-collections-their-past-present-and-future-contributions-and-options-for-sustaining-them
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metadata associated with sequences to ensure data correctness, completeness, and 
quality.  Recommend that NIH balance the needs to support the curation of metadata with other 
priorities. 

 

Conclusions 
 
This second working group is the continuation of an engagement process with the NIH to provide access 
to SRA data in the cloud in ways that are equitable, fair, and available to researchers across the 
biomedical landscape. NIH may consider an advisory committee as a long-term engagement process to 
provide recommendations to enrich SRA’s impact to the biomedical research community. As NIH plans 
next steps based on the recommendations in this report, the implementation teams will continue to 
engage the broader research community to solicit input on data formats, data access, and cloud use. 
NIH will need to carefully design the strategies in ways to maximize the value of NIH cloud investments 
for the research community. 
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Appendix 1: Organismal content and usage of public SRA 

 

Figure A1. Organismal content and usage of public SRA. Panel A shows the most prevalent organisms in 
the public portion of SRA. Panel B shows SRA data record usage in public SRA based on organism. In both 
graphs, the organism name associated with individual data records was used to collate data; all samples 
with the term “metagenomic” in the organism name were aggregated into a single value. Data are 
derived from SRA submissions and total usage logs – cloud and non-cloud – between 11/2019 to 3/2021. 
Data records associated with more than 10,000 individual organism names were retrieved 178 or more 
times during this period. 

Appendix 2: Assay type content of SRA 
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Figure A2. SRA content and usage by Data Type. Panel A shows the most prevalent Data Types in SRA. 
Panel B shows SRA data record usage based on Data Type. Data are derived from SRA submissions and 
total usage logs – cloud and non-cloud – between 11/2019 to 3/2021. 

 

Appendix 3: Glossary of Terms Used in this Report 
 

Base quality scores (BQS): Quantitative representations of the probability of an error at a base; 
most file types have one BQS per letter of sequence. 
 
Original format: The format in which data are initially submitted to SRA; NCBI supports 20 possible 
file formats. 
 
Normalized format: A standardized format to which NCBI converts all SRA data, also called ETL: 
extract, transform, load. 
 
Hot storage: A form of cloud storage in which data are immediately available to users. 
 
Cold storage: A form of cloud storage in which data must be “thawed” before becoming available to 
users; this is generally less expensive than hot storage. 
 
Thaw: The process of transferring data from cold to hot storage in the cloud. 
 
Amazon Web Services (AWS): One of the two cloud service providers currently hosting SRA data 
through the STRIDES Initiative. 
 
Google Cloud Provider (GCP): One of the two cloud service providers currently hosting SRA data 
through the STRIDES Initiative. 
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