Cellular Senescence Network (SenNet) Continuing Program

Richard Hodes, PhD
Director, National Institute on Aging
SenNet Co-Chair

Council of Councils *April 21, 2025*

OSC (Common Fund) – Cellular Senescence Network (SenNet) Continuing Program

Concept Clearance: Continuing/Stage 2 Common Fund Program

TITLE: Cellular Senescence Network (SenNet) Continuing Program

Objectives: Understand the biological relevance of senescence heterogeneity; Validate diverse senescence signatures in human biospecimens; and Inform senotherapeutic strategies for human health

Initiative 1: Define dynamic, organ-specific senotypes and advance pre-clinical model systems to test and validate senotherapeutic strategies

Initiative 2: Develop technologies, computational tools and multi-scale model systems to identify, characterize and predict the outcomes of modulating levels of senescent cells *in vivo*

Initiative 3: Generate and curate searchable Senescence Atlases of healthy and diseased tissues and organize the consortium and outreach efforts

Funds Available and Anticipated Number of Awards: \$30M per year for ~17 meritorious awards (contingent upon funding availability)

Program Duration: 5 years

Council Action: Vote for approval of the concept for Cellular Senescence Network (SenNet) Program

NIH SenNet Management Team

Co-Chairs

Richard Hodes (NIA)

Dinah Singer (NCI)

Program Coordinators

Yih-Woei Fridell (NIA)
Chamelli Jhappan (NC))

Senior Scientific Program Manager

Pragati Katiyar (NIA)

Working Group Members

Amanda DiBattista (NIA)*
Andras Orosz (NIA)*
Andrew Bremer (NICHD)
Chyren Hunter (ORWH)
Christian Gomez (NHLBI)
Dan Miller (NINDS)

David Bollweg (OSC/OD)

Dena Procaccini (OSC/OD)

Eric Brunskill (NIDDK)
Kevin Howcroft (NCI)*

George Santangelo (OD)
Haluk Resat (OSC/OD)*

Irina Sazonova (NIA)

Janet Cyr (NIDCD)

Johana Dwyer (OD)

Kristin Abraham (NIDDK)*

Laura Rowland (NIMH)

Leonid Tsap (NIA)

Linnia Mayeenuddin (NCI)

Mahua Mukhopadhyay (NICHD)

Mercy Prabhudas (NIAID)*

Merriline Vedamony (NIAID)

Michael Kurilla (NCATS)

Paige Green (NCI)

Peter Gao (NIAAA)

Preethi Chander (NIDCR)

Rebecca Katz (NCATS)

Richard Conroy (OSC/OD)

Roger Little (NIDA)

Shannon Hughes (NCI) *

Common Fund Program Leader

Tanya Hoodbhoy OSC/OD)

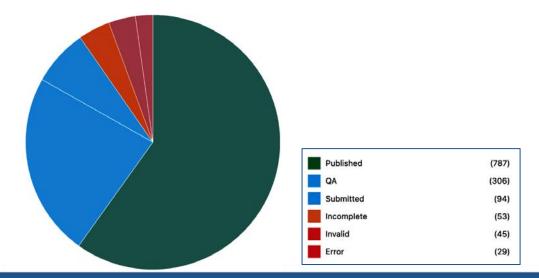
Sonynka Ngosso (OSC/OD)

Xincheng (Ted) Zheng (NIAMS)

Yisong Wang (NCCIH)

Youngsuk Oh (NHLBI)

Houmam Araj (NEI)

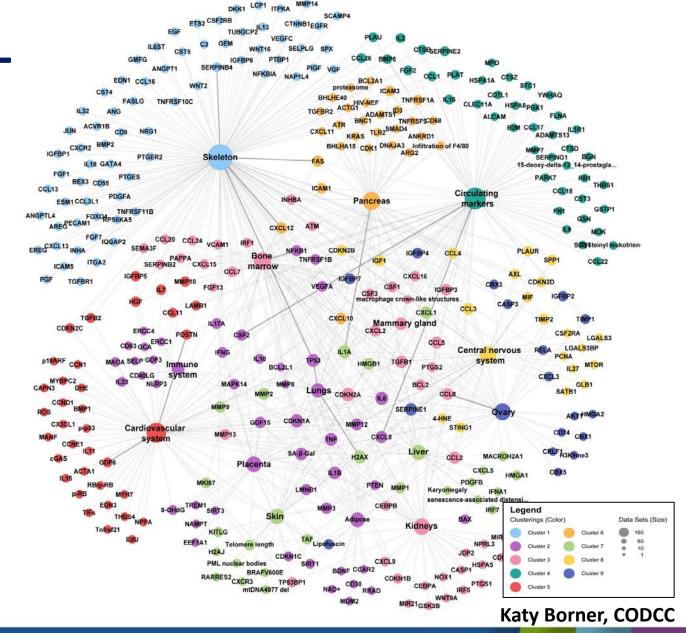

* Project Scientists

Background on Cellular Senescence

- Durable cell-cycle arrest state with a pro-inflammatory, senescence-associated secretory phenotype (SASP)
- Senescent cells have varied biological roles in normal and disease states, including tumor suppression, embryonic development, tissue repair, and wound healing
- Accumulation of senescent cells contributes to the pathology of age-associated conditions, while elimination of senescent cells is associated with improved healthspan and lifespan in rodent models
- Senescent cells are rare, highly heterogeneous and the mechanisms responsible for senescence in vivo are not well understood
- NIH Common Fund launched the Cellular Senescence Network (SenNet) program to characterize cellular senescence in healthy aging

Impact of SenNet Stage 1-Data

- Over 1300 datasets generated across organs
- >780 datasets published
- 153 protocols published

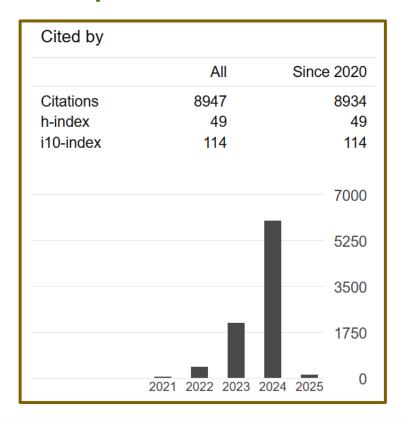


	10x Multiome	ATACseq	CosMx	GeoMx (NGS)	Histology	rc-ms	PhenoCycler	RNAseq	RNAseq (with probes)	Visium (no probes)	Visium (with probes)	Xenium	Grand Total
Adipose Tissue								27		4	9		40
Human										4	9		13
Mouse								27					27
Bone Marrow								7					7
Human								7					7
Brain		1	3	1				17		122			144
Human										122			122
Mouse		1	3	1				17					22
Heart					82			48					130
Human					82			48					130
• Heart					20								20
Human					20								20
• Large Intestine	4									4			8
Human	4									4			8
• Liver	20			47				26			21		114
Human	20			47				2			21		90
Mouse								24					24
•Lung	8				95	128	6	128	11	12			388
Human	8				95	128	6	120	11	12			380
Mouse								8					8
Lymph Node							17						17
Human							17						17
Muscle								71					71
Mouse								71					71
Other								4					4
Mouse								4					4
Ovary						22		26					48
Human						22		26					48
Pancreas					180			12	30		40	32	294
Human					180			12	30		40	32	294
●Skin						29							29
Mouse						29							29
Grand Total	32	1	3	48	377	179	23	366	41	142	70	32	1314

Impact of SenNet Stage 1-Senescence Biomarkers Visualized

Organ and Biomarker Bi-modal Network

- Represents the connections between 15 human organ tissues and 327 biomarkers identified by SenNet.
- Extensive heterogeneity-few biomarkers are associated with more than 10 organs
- Senotype: A conceptual framework to define heterogeneous senescent cells that are biological context- and environmental factordependent



Impact of SenNet Stage 1-Development of Novel Tools and Technologies to Facilitate Senescence Characterization

- 18 F-PyGal radiotracer: in vivo β -Gal detection with PET/MRI imaging (Stanford)
- Pixel-Seq: Integrated single-cell spatial transcriptomic and proteomic assay for mapping senescent cells (UWA) <u>Cell</u>. 2022
- **Seq-scope:** High resolution spatial transcriptomics for detecting rare cells (UMI)
- **SenoQuant:** A fast and precise analytical tool to measure senescence markers in human tissue (Mayo)
- **FICTURE:** Resolving segmentation issues that are prevalent in senescence research (UMI) *Nat Methods*. 2024
- ScResolve: Recovery of single cell expression from data acquired at the multicellular level (Carnegie Mellon) <u>Cell Rep Methods</u>. 2024

Impact of SenNet Stage 1-Publications

288 publications to date

SenNet WG Publications

Vidyani Suryadevara ©¹, Adam D. Hudgins ®¹, Adarsh Rajesh¹, Alberto Pappalardo ®⁴, Alla Karpova ®⁵, Amit K. Dey ®⁵, Ann Hertzel³³, Anthony Agudelo³⁰, Azucena Rocha³⁰, Bikem Soygun¹, Birgit Schilling ®˚, Chase M. Carver²³³, Anther M. Azucena Rocha³°, Bikem Soygun¹, Birgit Schilling ®˚, Chase M. Carver²³³, Cirstina Aguayo-Mazzucato 6⁴, Darren J. Baker ®¹³³, Ayudi A. Bernloh¹*, Diana Jurk №³³³³, Diana Jurk №³³³³, Diana Jurk №³³³, Piranesco Cambuli³³, Gagandeep Kaur²³, Gorge A. Kuchel ®³³³, Grig Lee³³³, Heike E. Daldrup-Link¹, Helene Martini® ³³³, Hemail Phatnani³³, Ima M. Al-Naggar²³, Irfan Rahman³, Jia Nie³, João F. Passos³³³, Jonathan C. Silverstein ®³³, Judith Campisi³³³, Juliu Wang², Kanako Iwasaki ®³*, Karina Barbosa ®³, Kay Metis²⁵, Kerem Nernekil², Laura J. Niedernhofer³³, Li Ding³, Lichao Wang²³³³, Lisa G. Adams¹, Liu Ruiyang³, Madison L. Doolittle ®³³³³, Marcos G. Teneche ®¹, Marissa J. Schafer ®³³³, Ming Xu ®²³²³, Mohammadjavad Hajipour¹, Mozhgan Boroumand®³, Nathan Basisty³, Nicholas Sloan³³, Nikolai Slavov®³³³³, Olena Kuksenko³³, Paul Robson ®³³³³, Ruta Paul T. Gomez.³³¹ Perikila Caraza?¹ Periklis Vasilikos ®³¹ Peter D. Adams ®², Priscila Carapeto¹³, Quan L'hū³³ Ramalashmi Ramasamy ®³³, Rolando Perez-Lorenzo ®⁴, Rong Fan ®³², Runze Dong³³³³, Ruth R. Montgomery ®³³, Sadiya Shaikh³¹, Sanja Vickoviç³³³, Sanishan Yin², Shoukai Kang³¸³, Sonja Suvakov³³³, Sundeep Khosla ®³³²³, Vasna D. Garovic³³³, Sanishan Yin², Shoukai Kang³¸³, Sonja Suvakov³³³, Sundeep Khosla ®³³²², Vasna D. Garovic³³³, Sanish³³¹, Yasna D. Garovic³³³, Sanish³³¹, Yasna D. Garovic³³³³, Sanish³³³, Sanish³³³, Sanish³³³, Sanish³³³, Sanish³³³, Sanish³³³, Sanish³³³³, Sanish³³³, Sanish³³³³, Sanish

Stage 2 Planning Activities

Focus group surveys involving Consortium PIs and NIH WG members

External Experts meetings

Program Consultants meetings

Executive Summary

- Define biological relevance of senescence heterogeneity with mechanistic understanding of cellular senescence to guide senotherapeutic strategies
- Develop and expand pre-clinical model systems for validation and understanding of senescence physiology and pathology
- Need to study senescence in the context of disease
- Develop cutting-edge tools including AI/ML for senescence signature prediction, validation and therapeutic approaches
- Enhance data integration and interactions between SenNet and other single-cell consortia including HTAN, HuBMAP, and SMaHT

Stage 2 Planning Activities-Portfolio Analysis (2015-2024)

SenNet Stage 1 topics

Senescence, single-cell spatial tissue mapping

SenNet Stages 1 & 2 topics

Senescence, single cell biomarker heterogeneity

SenNet Stage 2 topics

Senescence, single cell biomarker heterogeneity and animal *or* preclinical models

SenNet Stage 2 topics

Senescence, single-cell heterogeneity and computational models *or* artificial intelligence

29 awards (22 SenNet)

17 awards (7 SenNet)

5 awards (2 SenNet)

2 awards

Continued SenNet Investment is Needed

- To understand the extent of heterogeneity and the biology of senescence at the single-cell level for normal and disease states
- To uncover and validate biomarkers/molecular targets for senotherapeutics in relevant pre-clinical models
- To develop novel tools, technologies, including harnessing the predictive power of AI/ML to accelerate the discovery of senescence targets
- To integrate Stage 1 tissue mapping efforts with Stage 2 data to generate searchable Atlases of Senescence

SenNet Stage 2 Goals and Initiatives

SenNet Stage 2 Goals

- Understand the biological relevance of senescence heterogeneity
- Identify and validate diverse senescence signatures in human biospecimens
- Inform senotherapeutic strategies for human health

SenNet Stage 2 Initiatives

Initiative 1: Discovery, Mapping and Validation Centers (DMVCs; U54)

Initiative 2: Senescence Technology Projects (SenTecs; UG3/UH3s)

Initiative 3: Data Coordination Integration and Organizational Center (DCIOC; U24 or UM1)

Initiative 1 Discovery, Mapping and Validation Centers (DMVCs; U54)

Leverage state-of-the-art, spatial, single-cell technologies to identify and functionally characterize tissue-specific senotypes in health and disease conditions

Deliverables

- Define dynamic, organ-specific senotypes and their function in health and disease conditions
- Advance pre-clinical model systems to test and validate senotherapeutic strategies to improve health and alleviate disease conditions

Initiative 2 Senescence Technology Projects (SenTecs; UG3/UH3)

Employ an integrated systems biology approach that leverages several scientific disciplines to address the new complexity of senescence to advance current understanding of the biological relevance of senescence heterogeneity

Deliverables

- Develop technologies and multi-scale model systems to determine cellular senescence-associated outcomes in vivo
- Develop computational tools, including AI/ML to identify, characterize and predict the outcomes of modulating levels of senescent cells in both aging and age-associated conditions in vivo

Initiative 3

Data Coordination Integration and Organizational Center (DCIOC; U24 or UM1)

Integrate Stage 1 tissue mapping efforts with Stage 2 data to generate dynamic, searchable Atlases of senotypes representing the spatial distribution of senescence signatures across tissues and lifespan, and in health and disease conditions

Deliverables

- Generate and curate Senescence Atlases of healthy and diseased tissues with tools to search and manipulate SenNet data
- Initiate, implement and manage cross-consortium and outreach activities for synergistic collaborations and enhance SenNet output and visibility to the broader research community

SenNet Stage 2 Proposal Meets Common Fund Criteria

- **Novel:** Biological and computational approaches to interrogate the functional outcomes of senescence heterogeneity in a multi-tissue, multi-center and multi-technology setting
- Transformative: Potential for paradigm shifting senescence research and senotheropeutic strategies
- Catalytic: Advances will accelerate tissue- and organ-specific senescence research across human lifespan and in disease conditions
- Goal-driven: Dynamic, searchable atlases of senotype biology across human lifespan, innovative pre-clinical model systems, multi-scale and computational tools and methods, and cross-consortium and outreach activities to enhance SenNet impact
- Synergistic: Advance the missions across NIH ICOs in multiple diseases and conditions

Proposed SenNet Stage 2 Budget

	Lead IC	FY26	FY27	FY28	FY29	FY30
Initiative 1 – SenNet Discovery, Mapping and Validation Centers (~8 DMVCs; U54)	NIA	\$20M	\$20M	\$20M	\$20M	\$20M
Initiative 2 – SenNet Technology Projects (~8 SenTecs; UG3/UH3)	NCI	\$6M	\$6M	\$6M	\$6M	\$6M
Initiative 3 – SenNet Data Coordination Integration and Organization Center; (1 DCIOC; U24 or UM1)	NCI	\$3.4M	\$3.4M	\$3.4M	\$3.4M	\$3.4M
RMS – for NIH staff salary and travel; NIH-organized workshops		\$0.6M	\$0.6M	\$0.6M	\$0.6M	\$0.6M
TOTAL		\$30M	\$30M	\$30M	\$30M	\$30M

Anticipated Deliverables

- Curated, searchable atlases of senotype biology in health and disease
- Improved animal and relevant pre-clinical models to accelerate senotherapeutic interventions
- Innovative tools and technologies including AI/ML approaches to predict the biological outcomes of senescence heterogeneity and modulation of senescent cells *in vivo*

Council Action: Vote for approval of the concept for Cellular Senescence Network (SenNet) Continuing Program

