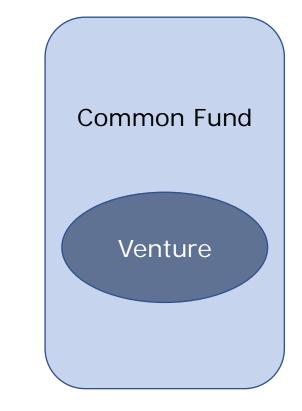
Common Fund Venture Program Update

Douglas M. Sheeley, Sc.D. Acting Director, Office of Strategic Coordination (OSC) September 13, 2024



Venture Program

"Amazing things with modest funding"

Venture is enabling Common Fund support of **bold**, **short-term** initiatives.

- Adds flexibility to implement CF mission quickly, through small, innovative programs
- Launched in FY24 with 2 initiatives
 - Oculomics
 - Systems Biology Data Platform

Venture is part of Common Fund, not a separate activity

Venture Criteria

Proposals must meet Common Fund criteria:

- **Transformative** exceptionally high and broad impact in biomedical/behavioral research
- Catalytic time-limited investments, accelerate and enable subsequent research
- Goal-driven defined goals to develop specific deliverables
- **Synergistic** advance missions of multiple ICOs, relevant to multiple diseases/conditions
- **Novel** innovative solutions to specific scientific challenges

Proposals must meet additional Venture Space criteria:

- **Bold** daring investments with potential for significant, outsized impact
- Nimble can be implemented rapidly in response to scientific opportunity
- Focused 3 years, up to \$5M/year in a clearly defined research topic

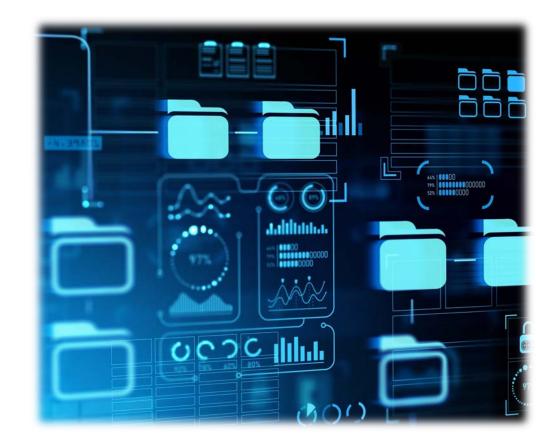
Development and Application of Imaging Technologies for Oculomics

Goal:

- To support development and application of novel, noninvasive ocular (eye) imaging technologies, machine learning algorithms, and other tools
- Enable identification of highly sensitive and specific **biomarkers** for diseases affecting the **whole body**

Status:

- Issued Research Opportunity Announcement in March
- Applications received in May
- Up to 3 awards anticipated by end of September


Systems Biology Data Platform

Goal:

- To integrate multiple data types from the Accelerating Medicines Partnership (AMP) program
- Will allow researchers to explore the role of a gene, molecule, cell, or pathway across tissues involved in different diseases

Status:

- Issued Research Opportunity Announcement in March
- Applications received in May
- 1 to 2 awards anticipated by end of September

Improvements to Venture

• Enhancing external engagement and transparency

- o Leveraging public input in developing new initiatives through an annual request for ideas
- Regular updates to Council with opportunity for discussion
- Same transparency as with all CF programs public websites with goals, purpose, leadership, funding opportunities, funded research, research results, etc.

• Monitoring/reporting on milestone-driven progress

- Each project has defined milestones, monitored frequently, with formal reporting at least annually
- o Initiative websites will be updated with progress and achievements over time

Improvements to Venture

Clarifying language to avoid misunderstandings

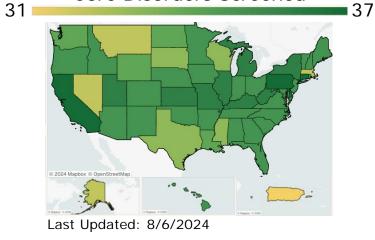
- Explicit inclusion of biomedical and behavioral science; basic, translational, clinical, and community-based research
- Emphasize boldness of approach, rather than risk we embrace bold approaches to ultimately result in impactful outcomes

Inclusion of diverse perspectives

- Leveraging the work of internal OSC committee focused on enhancing diversity and inclusion in our programs
- Various strategies including:
 - o outreach to diverse groups of potential investigators and end users
 - o requirements for plans to enhance diverse perspectives in applications
- Strategies for including diverse perspectives will be described in Council updates

New Venture Initiative– Newborn Screening by Whole-Genome Sequencing (NBSxWGS)

Objective: demonstrate feasibility of a collaborative model for NBS by WGS


- A single \$5M annual investment over 3 years
- Demonstration project across multiple states, to show potential for a national NBSxWGS program
- Demonstrating feasibility of a national program would be an important advance:
 - More equitable access
 - Better able to keep pace with therapeutic developments for rare diseases

Current State-Run Newborn Screening (NBS) Programs

Core Disorders Screened

 Each year, 97% of newborns in the U.S. are screened by public health labs for various genetic disorders.

Most screening is done via <u>biochemical assays</u> rather than DNA sequencing.

Many states screen for at most <u>37* core conditions</u> and <u>25 secondary conditions</u> on the federally recommended screening panel (i.e., the RUSP).

□ Thousands of rare genetic diseases are not screened.

The diagnostic odyssey takes years for many of these diseases, precluding the possibility of early treatment.

Source: Newborn Screening Technical assistance and Evaluation Program (NewSTEPs) <u>www.newsteps.org/resources/data-visualizations/newborn-screening-status-all-disorders</u>

*Jan 2024: HHS Advisory Committee on Heritable Disorders in Newborns & Children (ACHDNC) voted to add infantile Krabbe disease to their Recommended Uniform Screening Panel (RUSP) for newborns, bringing the number of core conditions to 38 (doi: 10.1126/science.zsi5h5d).

Last Updated: 8/6/2024

Venture Initiative Goals for NBSxWGS

Overarching Aim: Demonstrate feasibility of a collaborative model for NBS by WGS across 5-10 states - provide a roadmap to a national newborn genetic screening program.

Support a centralized lab for analysis and interpretation of genomic sequencing results.

Achieve equitable access to genomic sequencing in the newborn period.

Focus on a limited gene panel of serious / life-threatening rare diseases with early treatment options available.

Examine ethical, legal & social implications (ELSI) of populationwide genomic sequencing in the newborn period.

Strength in Diversity

NBSxWGS will:

□ Establish a Community Advisory Board (CAB)

- Solicit opinions on WGS for newborns from underrepresented communities and community leaders, interest groups and subject matter experts
- Advise on community engagement approaches, informed consent, data sharing, research design, implementation barriers for study, community education, dissemination strategies, etc.

□ Attract new expertise to the NBS field

- Subject matter expertise to inform implementation of NBS X WGS at scale
- Provide opportunities to make progress on diversification

□ Require Plans for Enhancing Diverse Perspectives

Responsive to Common Fund and Venture Criteria

Common Fund Criteria

□ Transformative: Enable early or even pre-symptomatic treatment of rare genetic diseases

□ Catalytic: Answer questions to enable broad U.S. implementation of universal, socially acceptable, and equitable newborn genomic sequencing.

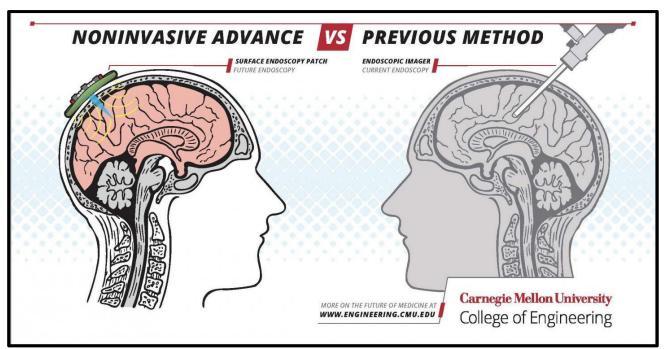
Venture Criteria

- □ Bold: Transform NBS in the U.S. to provide actionable genomic results for earlier intervention
- □ Nimble: Essential components already in place
 - Rapid genome sequencing technology
 - Gene lists for newborn sequencing
 - Small, state-specific pilot programs

□ Focused: 3-year program implemented over 5-10 states to determine the feasibility of a nationwide program

Anticipated Impact

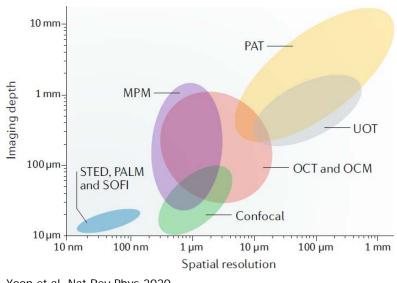
NBSxWGS will ...


- Enable early treatment, improving health outcomes for newborns with rare genetic conditions
- Provide more equitable access to genomic sequencing for newborns
- ***** Expand screening from <40 to hundreds of diseases
- Increase uniformity of screened conditions among states
- Decrease the diagnostic odyssey for individuals with rare diseases

New Venture Initiative: Advancing Non-Invasive Optical Approaches for Biological Systems

Objective: Develop optical systems to noninvasively engage target regions within intact, live tissues

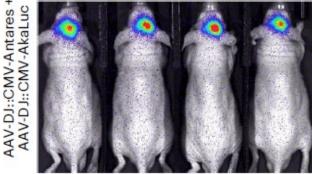
- Multiple awards totaling \$5M annually, over 3 years
- Temporal and spatial resolution matching current state-of-the-art invasive approaches used in medicine and research
- Would permit non-invasive measurements at multiple scales (region, cell, subcellular, molecular)
- Reveal physiological and pathophysiological processes in real time


Chamanzar and Scopelliti, CMU <u>https://engineering.cmu.edu/news-events/news/2019/07/16-chamanzar-nature.html</u>

Enabling Technology for Non-invasive Imaging

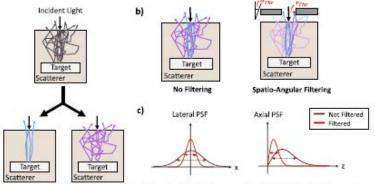
Our Challenge

- Trade-offs between imaging depth and resolution
- Limited dynamic range
- Avoiding damage to living tissue



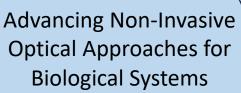
Yoon et al, Nat Rev Phys 2020

Current Research Approaches


• In vivo signal systems and amplifiers

+3.0 µmol CFz

Su et al, Nat Chem Bio 2023


- Requires transgene expression
- Improving light penetration and detection

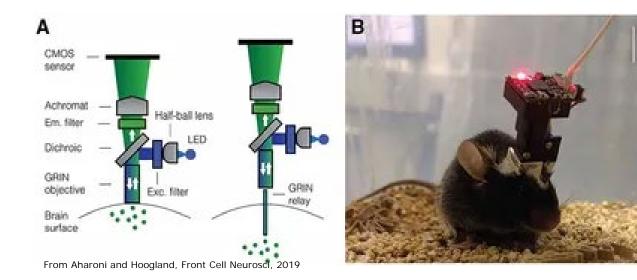
Weakly Scattered Strongly Scattered Lateral Resolution Enhancement Axial Resolution Enhancement Cua et al, Biomed Optic Exp, 2022

Requires validation and optimization in vivo

The Future

- Capable of wide resolution dynamic range (μm to cm)
- Noninvasive (no surgical access, transgenes or contrast agents)
- **Broadly applicable** (collect information from multiple tissue functions simultaneously)

Venture Initiative Goal


Program Goals:

- Enable development of next generation non-invasive imaging platforms toward many biological and biomedical applications
- Incorporate approaches that push optical interfaces beyond the limits of diffraction and address light scattering in tissue

Anticipated Work Products:

Phased approach (Years 1-2)


- Hardware designs that integrate novel forms of optical imaging data acquisition and processing
- Prototypes that overcome lightscattering barriers in complex biological systems
- (Year 3) **Optimization** and performance testing

Current in vivo imaging is cumbersome and invasive.

Workforce and Team Diversity are Essential for Success

Advertising broadly is key to broadening access

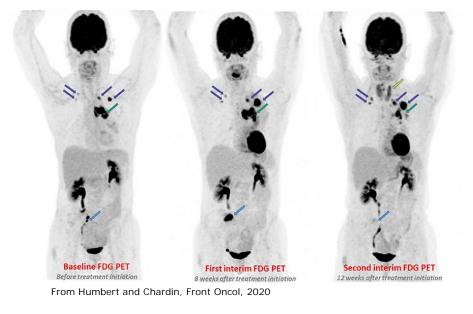
- Requires diverse teams including physicists, biologists, engineers, etc.
- Encourage partnerships across institutes and research organizations
- Provide research and training opportunities encouraging URM involvement
- □ Include outreach and advertising
 - Professional societies
 - Social media
 - Informational Webinar
- Require Plans for Enhanced Diverse Perspectives with milestones monitored throughout each project

Responsive to Common Fund and Venture Criteria

Common Fund Criteria

- □ Catalytic: Drive advances in:
 - *in vivo* biochemistry and cellular activity measurement
 - point-of-care advanced diagnostics and longitudinal monitoring
 - non-invasive procedures that replace surgery
- □ Goal-driven: Quantitative metrics to demonstrate *in vivo* improvements to tissue depth, contrast, and temporal and spatial resolution across scales
- □ Synergistic: Multidisciplinary approaches with widely applicable outcomes across NIH

Venture Criteria


- □ Bold: Adapt fundamental principles of microscopy to non-invasive in vivo imaging
- Nimble: Combine key elements under active research to demonstrate and motivate additional development, including
 - Technologies already demonstrated in non-biological systems
 - Methods yet to be optimized in heterogenous tissues
- □ Focused: Phased awards for 2-year development and 1-year optimization

Anticipated Impact of Improved Optical Technologies Spans Basic, Clinical and Translational Research

- Reveal physiological processes in real time at multiple scales
- Enable meaningful interactions with living systems without invasive manipulations
 - E.g., inflammatory processes, neuronal and muscular activity, fetal development
- Allow monitoring of clinical processes, including morphological and cellular features:
 - E.g., cancer progression and response to treatment, coronary artery disease, neurodegenerative diseases

Response monitoring with FDG-PET

Current state of the art requires radioisotope tracers to monitor clinical treatment and progression.

Questions or comments?

