MoTrPAC: Molecular Transducers of Physical Activity

Concepcion Nierras, Ph.D. Program Leader, OSC

On behalf of the MoTrPAC Program Management Team

MoTrPAC Program Goals

- Assemble a comprehensive map of the molecular changes that occur in response to exercise and when possible relate these changes to the benefits of physical activity
 - This map will contain the many molecular signals that transmit the health-improving effects of physical activity, and indicate how signals are altered by variables such as age, sex, body composition, fitness level, and exposure to exercise training.
- Develop a user-friendly database that any researcher can access to develop hypotheses for additional studies regarding the mechanisms whereby physical activity improves and/or preserves health

Consortium organization and Study design

Cell 2020 Jun 25; 181(7):1464-1474

Perspective

Molecular Transducers of Physical Activity Consortium (MoTrPAC): Mapping the Dynamic Responses to Exercise

James A. Sanford,^{1,12} Christopher D. Nogiec,^{2,12} Malene E. Lindholm,^{3,12} Joshua N. Adkins,¹ David Amar,³ Surendra Dasari,⁴ Jonelle K. Drugan,⁵ Facundo M. Fernández,⁶ Shlomit Radom-Aizik,⁷ Simon Schenk,⁸ Michael P. Snyder,³ Russell P. Tracy,⁹ Patrick Vanderboom,⁴ Scott Trappe,^{10,11,12,*} Martin J. Walsh,^{2,11,12,*} and the Molecular Transducers of Physical Activity Consortium

The MoTrPAC Consortium

motrpac.org/aboutUs

- 6 Pre-clinical animal study sites (PASS)
- 7 Clinical Centers (11 recruiting sites)
- 7 Chemical Analyses Sites (CAS)
- Bioinformatics Center (BIC)

•

Coordinating Center/Data Monitoring QC/ Biorepository

Sample and Data Flows

Chemical Analysis Sites

Pre-clinical Animal Studies, Phase 1 (PASS Phase 1)

- <u>Phenotypes Measured</u>: Body Weight; Body Composition (by NMR); Maximum Oxygen Uptake (VO₂ max); Maximum Running Speed; Muscle Weight; Muscle Histology
- Metabolic adaptations to the exercise training protocol differed by sex.
- The effect of treadmill exercise on body composition varied between males and females.
 - Adult males lose fat mass
- Treadmill training induced a shift in muscle fiber type composition
- There is a robust cardiovascular response to chronic treadmill exercise at 6 months of age, in both sexes.
- MoTrPAC's Tissue Repository has stored tissues for additional ancillary studies.

High-dimensional molecular profiling of the training response

Genomics

Epigenomics

- DNA methylation RRBS (METHYL)
- ▲ Chromatin accessibility (ATAC)
- RNA-seq (TRNSCRPT, SPLICE)

Proteomics

Global protein expression (PROT)

Post-translational modifications

- ▲ Phosphorylation (PHOSPHO)
- Acetylation (ACETYL)
- Ubiquitination (UBIQ)

Metabolomics

 Metabolites: named (N-METAB) and unnamed (U-METAB)

Cytokines

Cytokine immunoassays

Preliminary findings from PASS Training Study (1B-06)

 >40,000 analytes are regulated over the training time course

Weeks trained

Substantial regulation at the transcript, protein, and PTM levels

- DNA ↓ RNA ↓ Protein
- Genes regulated by training in multiple tissues are enriched for pathways related to metabolism, inflammation, ECM remodeling, and nutrient absorption

- Multiomics clustering identifies several major molecular trajectories over the training time course
- Top 10 most enriched pathways are related to metabolism

 $Q_{\mathcal{O}}$

 Strong sex-specific response: Half of the multiomics clusters have different trajectories in males and females

Next steps: PASS

- Multi-omic and multi-tissue analyses of samples from Acute Exercise of 6-month-old animals (PASS 1A-06)
- Analyses of samples from 18-month-old animals: Training (PASS 1B-18) and Acute Exercise (PASS 1A-18)
- Comparison of responses between 6- and 18-month animals
- Mechanistic studies (PASS Phase 2) are ongoing
- Data release planned in 2022

MoTrPAC Clinical Study- Adults

Sedentary (SED) Participants

Screening and Phenotyping* (~2 months)		Randomized to:		Pre-intervention Testing (~3 weeks)			Intervention (~12 weeks)		tion eks)	Post-intervention Testing (~2 weeks)			ition eeks)		
~990 women		EE, n=~840		X	Χ	X		Χ		X	X	X	X	X	
aged 18+ yr		RE, n=~840		Х	Χ	Х			Χ	X	X	X	X	Х	۱r
~990 men aged		Control, n=~300		X		X				X	X	X		X	
18+ yr Meet eligibility criteria				Familiarization, washout**	Acute exercise test	Biospecimen collection ⁺		Endurance exercise	Resistance exercise	Physical activity monitoring	Phenotyping*	Washout**	Acute exercise test	Biospecimen collection+	
* Phenotyping includes assessments of aerobic fitness, muscle strength, body composition,															

** Washout (no exercise or testing) before acute exercise test, biospecimen collection

Highly Active (HA) Participants

Screening (~2 months)	Enrollment	Enrollment			Testing (~2 weeks)					
	HAEE, n=~150		Х	Х	Х	Х				
	HARE, n=~150		X	Х	X	X				
			Phenotyping*	Familiarization, washout**	Acute exercise test	Biospecimen collection⁺				
 * Phenotyping in strength, body ** Washout (no explosed on the strength) 	cludes assessments composition, physic (ercise or testing) be	s of cal efo	aerobi activity re acut	c fitnes , e exerci	s, mus ise test	cle and				

Eligibility Criteria – Physical Activity Levels

Highly Active, Endurance Exercise (HAEE)

- 240+ minutes/week of EE for 1+ years (increased heart rate, rapid breathing, sweating)
- Must include cycling at least 2 days/week
- Limited RE in past year
- No performance enhancing drugs in last 6 months

Highly Active, Resistance Exercise (HARE)

- 3+ upper body and 3+ lower body RE, 2+ days/week for 1+ years (high intensity)
- Limited to no more than 90 minutes/week of moderate EE
- No performance enhancing drugs in last 6 months

Sedentary (SED)

 No more than 1 day/week or 60 minutes/week of regular EE that results in increased heart rate, rapid breathing, and/or sweating in past year

Exercise Testing and Training

Group	CPET Cycling	1-RM CP, LP, LE	Isometric Knee Ext	Grip Strength	EE Acute Test	RE Acute Test	Progressive EE Training	Progressive RE Training
HAEE	Х		X	Х	Cycling 40 min 65% VO ₂ max			
HARE	X	X	X	Х		5 upper body 3 lower body 3 sets, 10-RM		
SED EE	Х		X	Х	Cycling 40 min 65% VO ₂ max		25-30 min CE 25-30 min TM 60-80% HRR	
SED RE	X	X	X	X		5 upper body 3 lower body 3 sets, 10-RM		5 upper body 3 lower body 3 sets, 10-RM
SED CON	Х		Х	Х				

MoTrPAC Clinical Study-Pediatrics

Table 1. Pediatric MoTrPAC Overview								
Screening for eligibility	g for Cross-Sectional Phase Enrollment Cross-Sectional Cross-Sectional Phase Enrollment Challenge (~3 weeks)		Intervention Phase Enrollment (EE or Control, ~12 weeks)	Post Intervention Health and Fitness Assessments (~2 weeks)				
	135 Low Activity EE females	 Aerobic fitness Muscle 	60 Low Activity EE females	 Aerobic fitness Muscle 				
	135 Low ActivitystrengthEE males• Habitualphysical	60 Low Activity EE males	strength • Habitual physical					
	25 High Activity EE females	activityDietary and behavioral	25 control females	activityDietary and behavioral				
	25 High Activity EE males • Preparation and Familiarizatio n with EE challenge ↓ • Washout EE Challenge with blood sampling	25 control males	 questionnair es Preparation for EE challenge ↓ Washout ↓ EE Challenge with blood sampling 					

Pediatrics Study:

- Pediatric participants are classified by Tanner Stage
- Protocol mirrors the adult protocol, but fewer children are entered in training phase
- Training is endurance exercise only
- Only blood samples are collected
- Recruitment is at a single clinical site

Prioritization Blood – no prioritization Skeletal muscle

- Gen/Epi/Transcr
- **Proteomics** •
- **Broad Nontargeted** • Metab
- UM Untargeted Metab •
- GA Tech Lipidomics •
- **Duke Targeted Metab**
- Mayo Targeted Metab ٠
- **Emory Oxylipins** •

Adipose-

- Gen/Epi/Transcr •
- Proteomics •
- **Broad Nontargeted** Metab
- GA Tech Lipidomics •
- UM Untargeted Metab •
- **Duke Targeted Metab** •
- Mayo Targeted Metab
- **Emory Oxylipins**

GET MSSM; Stanford									
Tissues	RNA-seq	ATAC-Seq	Methy lation	WGS					
Blood	Х	Х	Х	Х					
Sk. Muscle	Х	Х	Х						
White adipose	Х	Х	Х						

В	lroad		UMICH			Emory		
Tissues	HILIC Positive		IP+; R+; RP-		Tissues	Lipidomics		
Blood	Х	Blood	Х		Plasma	Х		
Sk.	×	Sk.	V		Sk.	~		
Muscle	^	Muscle	^		Muscle	^		
White	×	White	V		White	~		
adipose	^	adipose	^		adipose	^		

Proteomics at PNNL		Proteomics at Broad			Proteo Broa	omics at d Olink	
Tissues	Proteome	Tissues	Proteome		Blood	Х]
Sk. Muscle	Х	Х	Х		Ovylining	- Georgia T	ech
White				-	Слупринз	- Ocorgia i	
adipose	X				Tissues	Lipidomic	s
					Plasma	Х	

Х

Х

Sk.

Muscle White

adipose

Targeted - Duke										
Tissues	Acyl-CoAs	Nucleotides	BCAA- derived	Clinical analytes						
Blood			Х	Х						
Sk. Muscle	х	x	х							
White adipose	х	х	х							

Targeted - Mayo									
Tissue s	Amines	Acylcarnitines	Ceramides	TCA (organic acids)					
Blood	Х	Х	Х	Х					
Sk. Muscle	х	х	х	Х					
White adipose	Х	Х	х	Х					

MoTrPAC and COVID-19

motrpac.org

MoTrPAC and COVID-19

Annals of Epidemiology Volume 62, October 2021, Pages 19-21

Rapid report

Rapid report on using data to make standardized decisions about enrollment during the COVID-19 pandemic: perspectives from the MoTrPAC study

Stephanie M. George PhD ^a $\stackrel{\sim}{\sim}$ $\stackrel{\boxtimes}{\sim}$, Haiying Chen MD, PhD ^b, Michael E. Miller PhD ^b, W. Jack Rejeski PhD ^c, Cynthia L. Stowe MPM ^b, Christopher Webb MPP ^b, William E. Kraus MD ^d, Nicolas Musi MD ^e, John M. Jakicic PhD ^f

Acknowledgements

NIH Institute Director co-Chairs:

- Lindsey Criswell, NIAMS Robert Carter, NIAMS
- Richard Hodes, NIA
- Griffin Rodgers, NIDDK

- Jim Anderson, DPCPSI
- Betsy Wilder, OSC

<u>NIH Program Management Team</u>:

- Amanda Boyce, NIAMS
- Jonelle Drugan, NIAMS
- Stephanie George, NIAMS
- Jerome Fleg, NHLBI
- Lyndon Joseph, NIA
- Nick Leake, OSC

MoTrPAC Investigators

MoTrPAC Clinical Study Participants

National Institutes of Health Office of Strategic Coordination-The Common Fund

- Rebecca Lenzi, OSC
- Padma Maruvada, NIDDK
- George Papanicolaou, OSC
- Veronica Taylor, OSC
- John Williams, NIA
- Ashley Xia, NIDDK