MoTrPAC: Molecular Transducers of Physical Activity

Concepcion Nierras, Ph.D.
Program Leader, OSC

On behalf of the MoTrPAC Program Management Team
MoTrPAC Program Goals

• Assemble a comprehensive map of the molecular changes that occur in response to exercise and when possible relate these changes to the benefits of physical activity

 o This map will contain the many molecular signals that transmit the health-improving effects of physical activity, and indicate how signals are altered by variables such as age, sex, body composition, fitness level, and exposure to exercise training.

• Develop a user-friendly database that any researcher can access to develop hypotheses for additional studies regarding the mechanisms whereby physical activity improves and/or preserves health
Consortium organization and Study design

Cell 2020 Jun 25; 181(7):1464-1474

Perspective

Molecular Transducers of Physical Activity Consortium (MoTrPAC): Mapping the Dynamic Responses to Exercise

The MoTrPAC Consortium

- 6 Pre-clinical animal study sites (PASS)
- 7 Clinical Centers (11 recruiting sites)
- 7 Chemical Analyses Sites (CAS)
- Bioinformatics Center (BIC)
- Coordinating Center/Data Monitoring QC/ Biorepository
(A) Preclinical

6 months old

18 months old

Reverse light phase

Single bout

Training

30 min 80-90% VO₂max
5 days/wk 70% VO₂max 1, 2, 4 or 8 wks

Biospecimen collection

(B) Clinical

Sedentary adults

Phenotype assessments*

Sedentary endurance
Sedentary strength
Control

Acute exercise bout and biospecimen collection

Endurance training: 12 wks 3d/wk 60-80%
Strength training: 12 wks 3d/wk 60-80%
Normal ambulatory living (no exercise control)

Phenotype reassessments*

Acute exercise bout and biospecimen collection

Pediatric

Phenotype assessments*

Low-active endurance
Highly active endurance

Acute exercise bout and biospecimen collection

Endurance training: 12 wks 3d/wk

Phenotype reassessments*

Highly active adults

Phenotype assessments*

Highly active endurance
Highly active strength

Acute exercise bout and biospecimen collection

Subgroup of low-active endurance randomization: Training
No exercise control
Pre-clinical Animal Studies, Phase 1 (PASS Phase 1)

- **Fischer 344**
 - 6m
 - 18m

-Chronic Progressive Training
 - ~70% VO\textsubscript{2}max
 - 1 2 4 8 weeks

Acute Exercise
 - 30 minutes, ~80% VO\textsubscript{2}max
 - 0 30 60 minutes
 - 0 4 7 24 49 hours

Reverse Light-Cycle

Chemical Analysis Sites
 - Data generation for Multi-omics analysis

<table>
<thead>
<tr>
<th></th>
<th>6-month</th>
<th>18-month</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acute Exercise</td>
<td>Samples being analyzed</td>
<td>To be analyzed</td>
</tr>
<tr>
<td>Progressive Training</td>
<td>COMPLETED; Manuscript in preparation</td>
<td>To be analyzed</td>
</tr>
</tbody>
</table>
Chronic Progressive Training in 6-month animals (PASS 1B-06)

6m Animals

- 1 wk
- 2 wk
- 4 wk
- 8 wk
- Controls

Phenotypes Measured: Body Weight; Body Composition (by NMR); Maximum Oxygen Uptake (VO₂ max); Maximum Running Speed; Muscle Weight; Muscle Histology

- Metabolic adaptations to the exercise training protocol differed by sex.
- The effect of treadmill exercise on body composition varied between males and females.
 - Adult **males** lose fat mass
- Treadmill training induced a shift in muscle fiber type composition
- There is a robust cardiovascular response to chronic treadmill exercise at 6 months of age, in both sexes.
- MoTrPAC’s Tissue Repository has stored tissues for additional ancillary studies.
High-dimensional molecular profiling of the training response

Genomics
- DNA methylation - RRBS (METHYL)
- Chromatin accessibility (ATAC)
- RNA-seq (TRANSCRIPT, SPLICE)

Proteomics
- Global protein expression (PROT)

Post-translational modifications
- Phosphorylation (PHOSPHO)
- Acetylation (ACETYL)
- Ubiquitination (UBIQ)

Metabolomics
- Metabolites: named (N-METAB) and unnamed (U-METAB)

Cytokines
- Cytokine immunoassays
Preliminary findings from PASS Training Study (1B-06)

- >40,000 analytes are regulated over the training time course
- Substantial regulation at the transcript, protein, and PTM levels
- Multiomics clustering identifies several major molecular trajectories over the training time course
- Top 10 most enriched pathways are related to metabolism
- Genes regulated by training in multiple tissues are enriched for pathways related to metabolism, inflammation, ECM remodeling, and nutrient absorption
- Strong sex-specific response: Half of the multiomics clusters have different trajectories in males and females
Next steps: PASS

- Multi-omic and multi-tissue analyses of samples from Acute Exercise of 6-month-old animals (PASS 1A-06)

- Analyses of samples from 18-month-old animals: Training (PASS 1B-18) and Acute Exercise (PASS 1A-18)

- Comparison of responses between 6- and 18-month animals

- Mechanistic studies (PASS Phase 2) are ongoing

- Data release planned in 2022
MoTrPAC Clinical Study - Adults

Sedentary (SED) Participants

<table>
<thead>
<tr>
<th>Screening and Phenotyping* (~2 months)</th>
<th>Randomized to:</th>
<th>Pre-intervention Testing (~3 weeks)</th>
<th>Intervention (~12 weeks)</th>
<th>Post-intervention Testing (~2 weeks)</th>
</tr>
</thead>
<tbody>
<tr>
<td>~990 women aged 18+ yr</td>
<td>EE, n=840</td>
<td>X X X</td>
<td>X</td>
<td>X X X</td>
</tr>
<tr>
<td>~990 men aged 18+ yr</td>
<td>RE, n=840</td>
<td>X X X</td>
<td>X</td>
<td>X X X</td>
</tr>
<tr>
<td>Meet eligibility criteria</td>
<td>Control, n=300</td>
<td>X X</td>
<td></td>
<td>X X</td>
</tr>
</tbody>
</table>

- Familiarization, washout*
- Acute exercise test
- Biospecimen collection*
- Endurance exercise
- Resistance exercise
- Physical activity monitoring
- Phenotyping*
- Washout*
- Acute exercise test
- Biospecimen collection*

* Phenotyping includes assessments of aerobic fitness, muscle strength, body composition, physical activity; some pre-intervention phenotyping visits occur before randomization

** Washout (no exercise or testing) before acute exercise test, biospecimen collection

Highly Active (HA) Participants

<table>
<thead>
<tr>
<th>Screening (~2 months)</th>
<th>Enrollment</th>
<th>Testing (~2 weeks)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control, n=300</td>
<td>HAEE, n=150</td>
<td>X X X X X</td>
</tr>
<tr>
<td>Control, n=300</td>
<td>HARE, n=150</td>
<td>X X X X</td>
</tr>
</tbody>
</table>

- Phenotyping*
- Familiarization, washout**
- Acute exercise test
- Biospecimen collection

* Phenotyping includes assessments of aerobic fitness, muscle strength, body composition, physical activity

** Washout (no exercise or testing) before acute exercise test and biospecimen collection

NIH National Institutes of Health
Office of Strategic Coordination – The Common Fund
Eligibility Criteria – Physical Activity Levels

Highly Active, Endurance Exercise (HAEE)
- 240+ minutes/week of EE for 1+ years (increased heart rate, rapid breathing, sweating)
- Must include cycling at least 2 days/week
- Limited RE in past year
- No performance enhancing drugs in last 6 months

Highly Active, Resistance Exercise (HARE)
- 3+ upper body and 3+ lower body RE, 2+ days/week for 1+ years (high intensity)
- Limited to no more than 90 minutes/week of moderate EE
- No performance enhancing drugs in last 6 months

Sedentary (SED)
- No more than 1 day/week or 60 minutes/week of regular EE that results in increased heart rate, rapid breathing, and/or sweating in past year
Exercise Testing and Training

<table>
<thead>
<tr>
<th>Group</th>
<th>CPET Cycling</th>
<th>1-RM CP, LP, LE</th>
<th>Isometric Knee Ext</th>
<th>Grip Strength</th>
<th>EE Acute Test</th>
<th>RE Acute Test</th>
<th>Progressive EE Training</th>
<th>Progressive RE Training</th>
</tr>
</thead>
<tbody>
<tr>
<td>HAEE</td>
<td>X</td>
<td></td>
<td>X</td>
<td>X</td>
<td>Cycling 40 min 65% VO₂max</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HARE</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>5 upper body 3 lower body 3 sets, 10-RM</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SED EE</td>
<td>X</td>
<td></td>
<td>X</td>
<td>X</td>
<td>Cycling 40 min 65% VO₂max</td>
<td>25-30 min CE 25-30 min TM 60-80% HRR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SED RE</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>5 upper body 3 lower body 3 sets, 10-RM</td>
<td>5 upper body 3 lower body 3 sets, 10-RM</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SED CON</td>
<td>X</td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
MoTrPAC Clinical Study - Pediatrics

Table 1. Pediatric MoTrPAC Overview

<table>
<thead>
<tr>
<th>Screening for eligibility</th>
<th>Cross-Sectional Phase Enrollment</th>
<th>Health and Fitness Phenotyping and Acute Exercise Challenge (~3 weeks)</th>
<th>Intervention Phase Enrollment (EE or Control, ~12 weeks)</th>
<th>Post Intervention Health and Fitness Assessments (~2 weeks)</th>
</tr>
</thead>
</table>
| 135 Low Activity EE females | • Aerobic fitness
• Muscle strength
• Habitual physical activity
• Dietary and behavioral questionnaires
• Preparation and Familiarization with EE challenge
• Washout EE Challenge with blood sampling | 60 Low Activity EE females | • Aerobic fitness
• Muscle strength
• Habitual physical activity
• Dietary and behavioral questionnaires
• Preparation for EE challenge
• Washout EE Challenge with blood sampling |
| 135 Low Activity EE males | • Aerobic fitness
• Muscle strength
• Habitual physical activity
• Dietary and behavioral questionnaires
• Preparation and Familiarization with EE challenge
• Washout EE Challenge with blood sampling | 60 Low Activity EE males | • Aerobic fitness
• Muscle strength
• Habitual physical activity
• Dietary and behavioral questionnaires
• Preparation for EE challenge
• Washout EE Challenge with blood sampling |
| 25 High Activity EE females | • Aerobic fitness
• Muscle strength
• Habitual physical activity
• Dietary and behavioral questionnaires
• Preparation and Familiarization with EE challenge
• Washout EE Challenge with blood sampling | 25 control females | • Preparation for EE challenge
• Washout EE Challenge with blood sampling |
| 25 High Activity EE males | • Aerobic fitness
• Muscle strength
• Habitual physical activity
• Dietary and behavioral questionnaires
• Preparation and Familiarization with EE challenge
• Washout EE Challenge with blood sampling | 25 control males | • Preparation for EE challenge
• Washout EE Challenge with blood sampling |

Pediatrics Study:
- Pediatric participants are classified by Tanner Stage
- Protocol mirrors the adult protocol, but fewer children are entered in training phase
- Training is endurance exercise only
- Only blood samples are collected
- Recruitment is at a single clinical site
Prioritization
Blood – no prioritization
Skeletal muscle
• Gen/Epi/Transcr
• Proteomics
• Broad Nontargeted Metab
• UM Untargeted Metab
• GA Tech Lipidomics
• Duke Targeted Metab
• Mayo Targeted Metab
• Emory Oxylinps
Adipose-
• Gen/Epi/Transcr
• Proteomics
• Broad Nontargeted Metab
• GA Tech Lipidomics
• UM Untargeted Metab
• Duke Targeted Metab
• Mayo Targeted Metab
• Emory Oxylinps
MoTrPAC and COVID-19

motrpac.org
MoTrPAC and COVID-19

Annals of Epidemiology
Volume 62, October 2021, Pages 19-21

Rapid report

Rapid report on using data to make standardized decisions about enrollment during the COVID-19 pandemic: perspectives from the MoTrPAC study

Stephanie M. George PhD a, b, Haiying Chen MD, PhD b, Michael E. Miller PhD b, W. Jack Rejeski PhD c, Cynthia L. Stowe MPM b, Christopher Webb MPP b, William E. Kraus MD d, Nicolas Musi MD e, John M. Jakicic PhD f
Acknowledgements

NIH Institute Director co-Chairs:
• Lindsey Criswell, NIAMS
 Robert Carter, NIAMS
• Richard Hodes, NIA
• Griffin Rodgers, NIDDK

NIH Program Management Team:
• Amanda Boyce, NIAMS
• Jonelle Drugan, NIAMS
• Stephanie George, NIAMS
• Jerome Fleg, NHLBI
• Lyndon Joseph, NIA
• Nick Leake, OSC
 • Jim Anderson, DPCPSI
 • Betsy Wilder, OSC

MoTrPAC Investigators

MoTrPAC Clinical Study Participants