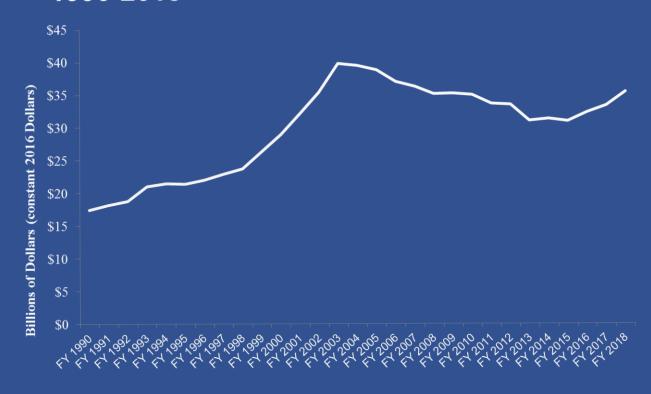
Director's Update

Francis S. Collins, M.D., Ph.D. Director, National Institutes of Health

Council of Councils Meeting

September 7, 2018

Changes in Leadership


Retirements

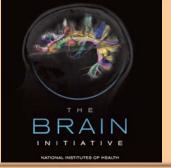
- Patricia Grady, Ph.D., R.N., FAAN, Director of the National Institute of Nursing Research (August 31, 2018)
- James Battey, Jr., M.D., Ph.D., Director of the National Institute on Deafness and Other Communication Disorders (June 1, 2018)

New Hires

- Helene M. Langevin, M.D., C.M., Director of the National Center for Complementary and Integrative Health (November 2018)
- Bruce Tromberg, Ph.D., Director of the National Institute of Biomedical Imaging and Bioengineering (January 2019)

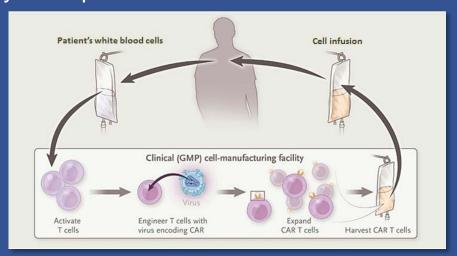
National Institutes of Health Funding 1990-2018

Note: Dollar values are adjusted to 2016 dollars using the Biomedical Research and Development Price Index (BRDPI), http://officeofbudget.od.nih.gov/gbiPriceIndexes.html.


Source: NIH Office of Extramural Research and Office of Budget source data (February 2, 2018).

Topics for Today

- Precision Medicine and Cancer
- Accelerating Medicines Partnership
- NIH BRAIN Initiative
- Artificial Intelligence
- Gene Therapy


Cancer Genomics: Advancing Precision Medicine

- NCI's Molecular Analysis for Therapy Choice (NCI-MATCH) trial:
 - Are targeted therapies effective, regardless of cancer type?
 - Multiple treatment arms target specific mutations
 - Tumors sequenced; patient matched to study arm
 - Milestone: results from three study arms published

NATIONAL CANCER INSTITUTE PRECISION MEDICINE IN CANCER TREATMENT

Cancer Moonshot: PACT

REVIEW ARTICLE

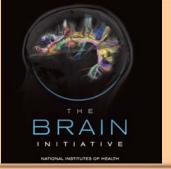
The Cancer Journal • Volume 24, Number 3, May/June 2018

The Partnership for Accelerating Cancer Therapies

Rebecca G. Baker, PhD,* Axel X. Hoos, MD, PhD,† Stacey J. Adam, PhD,‡ David Wholley, M.Phil,‡

James H. Doroshow, MD,§ Douglas R. Lowy, MD,§

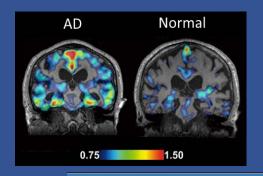
Lawrence A. Tabak, DDS, PhD,* and Francis S. Collins, MD, PhD*

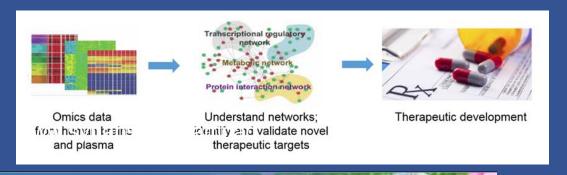

- 5-year, \$220M precompetitive public-private research partnership between NIH, FDA, FNIH, 12 companies
- Aims to speed development of immunotherapies for more types of cancer and more cancer patients

Topics for Today

- Precision Medicine and Cancer
- Accelerating Medicines Partnership
- NIH BRAIN Initiative
- Artificial Intelligence
- Gene Therapy

AMP: Overview


- NIH partnering with FNIH, FDA, 12 biopharmaceutical firms, multiple non-profits (including patient advocacy groups), to:
 - Increase the number of new diagnostics, therapies
 - Reduce time, cost of developing them
- Investing >\$350M over five years on four projects:
 - Alzheimer's disease
 - Type 2 diabetes
 - Rheumatoid arthritis/Lupus
 - Parkinson's Disease
- Project management provided by FNIH



AMP: Alzheimer's Disease (AMP-AD)

\$225M program aiming to shorten the time between discovery of potential drug targets and development of new AD drugs

- Projects:
 - Biomarkers
 - Target Discovery and Preclinical Validation
- Data available on AMP-AD Knowledge Portal

AMP: Type 2 Diabetes (AMP-T2D)

\$59M+ program to link human genetic and phenotypic data to identify novel drug targets for T2D and its complications

- Knowledge Portal online library and discovery engine launched 2015
 - Integrates diverse genomic, clinical, molecular data all confidential
 - Anyone with Google account can query
 - 38 datasets; 68 traits*
- Knowledge Portal Network provides genetic data on complex diseases

www.type2diabetesgenetics.org

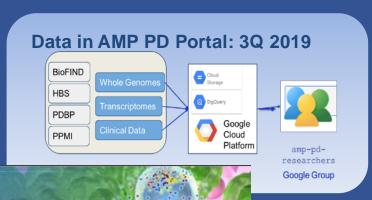
AMP: Rheumatoid Arthritis and Systemic Lupus Erythematosus (AMP-RA/SLE)

\$42M+ program for single cell analyses of kidney and synovial biopsies from patients with SLE or RA

- Prioritized single-cell RNA profiling of as many tissue samples as possible
 - Existing funds provide for collection, not analysis
- Proposal: "Year 6" for additional high-priority analyses for discovery and biomarkers for patient stratification (~\$8M)
 - Discovery: additional analyses of tissue cells
 - Biomarkers: analyses of paired blood, urine, skin (SLE)

SLE Kidney: scRNAseq reveals comprehensive clusters of tissue resident and diseasespecific immune cells

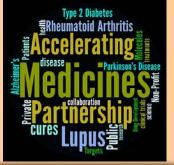
RA Synovium:

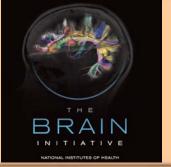

Integration of histology and scRNAseq data identifies three disease subtypes

AMP: Parkinson's Disease (AMP-PD)

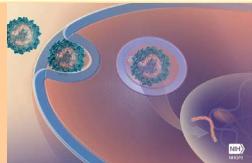
Launched January 2018

\$24M program to identify and validate diagnostic, prognostic, progression biomarkers


- Establish framework; develop knowledge portal
 - Gather, incorporate wealth of extant data; add new data
- Use portal to identify most promising biomarkers for new treatments
- Validate biomarkers incorporating additional data as needed
- Goal: make long-needed progress in developing effective PD treatments



Topics for Today


- Precision Medicine and Cancer
- Accelerating Medicines Partnership
- NIH BRAIN Initiative
- Artificial Intelligence
- Gene Therapy

Recent BRAIN Advances

Zebrafish larva's brain wiring – reconstructed from 16,000 slices
Pls: F. Engert, J. Lichtman; Harvard

Nanoscale neural probes created to avoid immune response from body.

PI: C. Chestek, U. Michigan

Non-toxic cellular imaging method developed – enables long-term study of neural circuits in mice.

PI: I. Wickersham, MIT

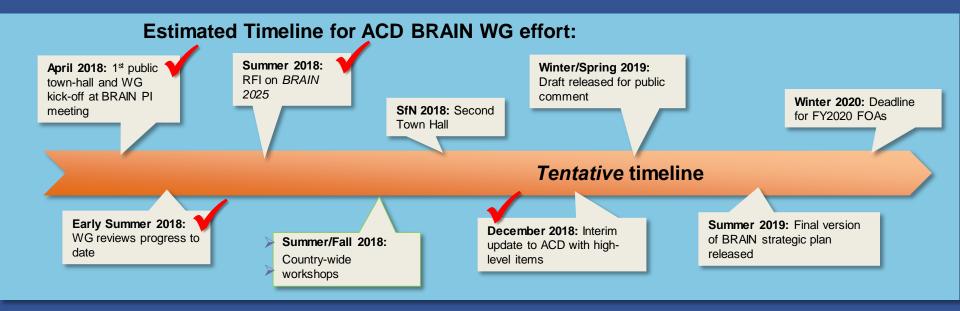
New kind of brain cell discovered: rosehip neuron. PI: E. Lein, Allen Institute

Deep brain stimulation improved to incorporate feedback, adjust stimulation from pacemaker.
PI: P. Starr, UCSF

NIH and the U.S. BRAIN Initiative

Brain Research through Advancing Innovative Neurotechnologies (BRAIN) Working Group Report to the Advisory Committee to the Director, NIH

June 5, 2014

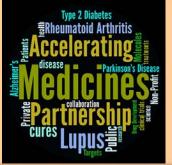


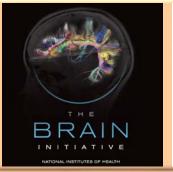
- A focus on circuits, networks
- Measure fluctuating electrical, chemical patterns within circuits
- Understand how all of this
 - Helps generate our thoughts, actions
 - Improves diagnosis, treatment of disorders

www.braininitiative.nih.gov

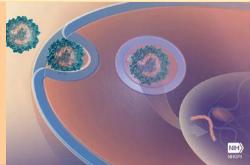
Rapid scientific progress ->
New NIH ACD BRAIN Initiative Working Group "2.0"

ACD WG 2.0 Timeline and Deliverables




- Goals for new WG:
 - Update scientific vision laid out in BRAIN 2025 to guide 2nd half of Initiative
 - Identify valuable areas of new and continued technology development
 - Consider the Initiative's unique contributions

Topics for Today


- Precision Medicine and Cancer
- Accelerating Medicines Partnership
- NIH BRAIN Initiative
- Artificial Intelligence
- Gene Therapy

ARTIFICIAL INTELLIGENCE

A program that can sense, reason, act, and adapt

MACHINE LEARNING

Algorithms whose performance improve as they are exposed to more data over time

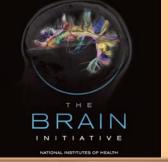
DEEP LEARNING

Subset of machine learning in which multilayered neural networks learn from vast amounts of data

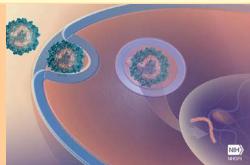
NIH WORKSHOP

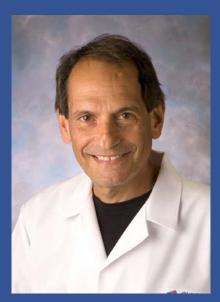
Harnessing **Artificial** Intelligence and Machine Learning to **Advance Biomedical** Research

JULY 23, 2018



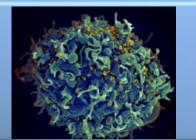
Topics for Today


- Precision Medicine and Cancer
- Accelerating Medicines Partnership
- NIH BRAIN Initiative
- Artificial Intelligence
- Gene Therapy



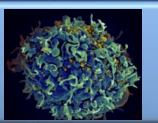
Gene Therapy for Spinal Muscular Atrophy

Jerry Mendell/Nationwide Children's Hospital, Columbus, OH


CRISPR-Cas9 and Gene Editing

- Basic science advance: from studies of yogurt, bacteria viruses
- Achieves targeted editing of genomes with enzyme (cas9) + guide RNA
 - Initial approaches created knockouts
 - Newer technologies can correct point mutations
- Producing mouse models has been greatly accelerated
- Has revolutionized basic molecular biology

Toward the 1st Cure for the 1st Molecular Disease?


Sickle Cell Disease (SCD)

- 1910: Disease described
- 1949: Inheritance shown to be recessive
- 1957: Genetic basis determined
- 1980: Hemoglobin genes cloned
- 1998: Hydroxyurea, first approved SCD drug
- Recently: Bone marrow transplants, but few patients have match
- Today: Gene transfer via viral vectors
- Today: CRISPR-Cas gene editing

First CRISPR Clinical Trial Backed by U.S. **Companies Launched**

NIH U.S. National Library of Medicine

Clinical Trials.gov

A Safety and Efficacy Study Evaluating CTX001 in Subjects With Transfusion-Dependent β-Thalassemia

Study Description

Brief Summary:

This is a single-arm, open-label, multi-site, single-dose Phase 1/2 study in up to 12 subjects 18 to 35 years of age with transfusion-dependent βthalassemia (TDT), non-β0/β0. The study will evaluate the safety and efficacy of autologous CRISPR-Cas9 Modified CD34+ Human Hematopoietic Stem and Progenitor Cells (hHSPCs) using CTX001.

ological: CTX001	Phase 1
	Phase 2
ol	logical: CTX001

New NIH Program: Somatic Cell Genome Editing

Program will:

- Speed development of safe, effective editing tools for human patients
- Make tools widely available to researchers
- Reduce time, cost to develop new therapies

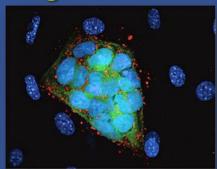
Francis S. Collins ② @NIHDirector · 8:03 AM - 25 Jan 2018
I just announced this at #wef18: #NIH's Somatic Cell Genome Editing research program will focus on accelerating dramatically the translation of technologies like CRISPR/Cas9 for treatment of as many genetic diseases as possible.
bit.ly/2F78HBI #CFGenomeEditing

NIH to launch genome editing research program

Somatic Cell Genome Editing aims to develop tools for safe and effective genome editing in humans.

nih.gov

https://commonfund.nih.gov/editing



NIH . . . Turning Discovery Into Health www.nih.gov/hope

directorsblog.nih.gov

